UNITED STATES DISTRICT COURT WESTERN DISTRICT OF ARKANSAS

UNITED STATES OF AMERICA,)
Plaintiff,
VS.
ANTHONY ALLEN JEAN,
Defendant.

TRANSCRIPT OF MOTION HEARING
BEFORE THE HONORABLE TIMOTHY L. BROOKS October 11, 2016; 2:14 p.m.

FAYETTEVILLE, ARKANSAS

FOR THE GOVERNMENT:
Mr. Denis Dean
United States Attorney's Office
414 Parker Avenue
Fort Smith, AR 72901
(479) 249-9040

Denis.Dean@usdoj.gov

FOR THE DEFENDANT:

> Mr. Jose Manuel Alfaro

Federal Public Defender
3739 N. Steele Blvd., Suite 280
Fayetteville, AR 72703
(479) 442-2306
joe_alfaro@fd.org

Proceedings recorded in realtime via machine shorthand.

Dana Hayden, CCR, RMR, CRR Federal Official Court Reporter 35 East Mountain Street
Fayetteville, Arkansas 72701

> I N D E X
> (MOTION HEARING)

October 11, 2016
Procedural History by the Court 3
DEFENDANT'S WITNESSES
DR. MATTHEW MILLER (via videoconference)
Direct Examination by Mr. Alfaro
Cross-Examination by Mr. Dean 42
Redirect Examination by Mr. Alfaro51

Examination by the Court 52
Redirect Examination by Mr. Alfaro 67
GOVERNMENT'S WITNESSES
DANIEL ALFIN
Direct Examination by Mr. Dean 70
Cross-Examination by Mr. Alfaro 86
Examination by the Court 95

Closing Argument by Defendant 100
Closing Argument by Government 113
Motion taken under advisement 118
Court Adjourned 123
Court Reporter's Certificate 124

THE COURT: We are proceeding in the matter of the United States versus Anthony Allen Jean. Our docket number is 5:15-CR-50087, defendant number 1. Denis Dean appears on behalf of the United States. Joe Alfaro appears on behalf of Mr. Jean.

Good afternoon, Mr. Jean.
THE DEFENDANT: Good afternoon.
THE COURT: We are proceeding today in a motion to compel hearing. For some background, Mr. Jean is facing a superseding indictment that was filed on June 22nd, which charges him with four counts involving the receipt of material involving the sexual exploitation of a minor, one count involving possessing material involving the sexual exploitation of a minor, and one count of accessing the Internet with intent to view child pornography. There's also a forfeiture allegation.

For background purposes, the Court would like to incorporate by reference certain background information in the nomenclature that it has used in stating the findings from its prior order on the defendant's motion to suppress. The Court's order can be found at document number 40 of the case file.

As I said, the current motion before the Court involves the defendant's motion to compel discovery. I
understand that the defendant anticipates calling an expert witness in the field of computer coding, or whatever the proper terminology would be, forensic computer codes, and that witness is going to be appearing via teleconference, and I assume that that is the gentleman on our TV screen.

And, sir, you would be Mr. Matthew Miller. Is that right?

MR. MILLER: That is correct.
THE COURT: All right. And I understand that the government would intend to call, during this hearing, one of the FBI agents that has had to do with this particular investigation in Mr. Jean's case specifically, but it also involves a number of cases across the country and that would be Agent Alfin, who we anticipate testifying live. Is that correct?

MR. DEAN: Yes, your Honor.
MR. ALFIN: Good afternoon, your Honor.
THE COURT: Good afternoon, Mr. Alfin.
All right. Well, before proceeding to take up evidence on our motion, I would like to state the Court's understanding of the present posture of this discovery dispute in terms of what information the Court has provided, as contrasted with the information that the government hasn't or won't provide.

This information is 1 argely gleaned from the parties' motion. Mr. Alfaro's motion appears at Document 28 of the court file. The government's response was at -- or appears at Document 30 of the court file, and there are many attachments and even a supplement that the parties have filed, including letters and e-mails that counsel has exchanged back and forth.

The parties have also attached affidavits to their papers. The affidavits would include a prior affidavit from Mr. Miller, who we anticipate testifying live in this case, but also an affidavit from Agent Alfin, who's testified in another, but similar, case.

And what I have observed in reading your briefs and the affidavits and being aware of the expert testimony that the parties mutually put on at our suppression hearing, there seems to be a little bit of a disconnect in the terminology that has been used to describe the information -- the universe of information that exists and which portion of that universe has not been produced or is the object of the defense motion to compe1.

So what I'd 1 ike to do in explaining a little bit further some of the necessary background is to put that -- is to use the terminology that I understand or
to use the nomenclature that the Court has used in its prior order that is helpful to the Court in understanding the different components, which is somewhat different than the nomenclature that the defense experts have used in describing what they call the four components of a NIT.

So I'm trying to get everyone on the same page so that we have our terms defined and we know what we're talking about, or at least that I understand what is in dispute.

So it begins with what we call the government's NIT, or the FBI's NIT, which is short for a network investigative technique. In this case the FBI's NIT consisted of computer code, which the Court understands is basically a string of computer instructions or commands, which were sent to activating users' computers who logged into and/or downloaded, allegedly, child pornography from what has been described as the Playpen website while it was under the government's control. In this case the activating computer user logged in with the avatar "regalbegal."

According to the government, when regalbegal began to download child pornography, the NIT -- which, again, is computer code -- and what we might call the NIT's operating instructions, were sent to regalbegal's
computer.
Those instructions ran on that computer and caused that computer to send back to the government six pieces of identifying information as itemized in the Court's suppression order and included, among other things, a unique identifier code that was transmitted by the NIT but then other information that was specific to regalbegal's computer, including that computer's specific MAC address and hostname, as well as regalbegal's computer's operating system and some other identifying information 1 ike that.

These pieces of information were then sent back in what has been described as "clear text," which I understand to mean in an unencrypted fashion, back to the government's computer.

According to prior testimony at the suppression hearing, the NIT did its business in sending this information back to the government within a span of 0.27 seconds. And very importantly, according to the expert testimony provided by both the government's expert and the defense expert at the suppression hearing, this information that was collected from Mr. Jean's computer was sent back to the government via the regular Internet, which is as opposed to the Tor browser, and the intentional side effect of sending it back over the
regular Internet was that every, what has been described as quote/unquote packet of information sent from regalbegal's computer back to the government's computer, those packets had regalbegal's true IP address attached to the packets.

So the government then submitted an administrative subpoena to the Internet service provider, as known as an ISP, that was associated with the IP address that was on these packets of information received from regalbegal's computer.

With the administrative subpoena, they obtained regalbegal's IP subscriber information, and with that information, it 1 ed them directly to Mr. Jean's doorstep, where a search warrant for Mr. Jean's computers was executed.

The Court understands, although not super deeply, but the Court understands that in a noncustodial interview, either incident to the execution of the search warrant or since that time, the government contends that Mr . Jean has admitted to downloading the child pornography that is in question in this indictment.
Mr. Jean's -- given Mr. Jean's admission in this regard, the Court is uncertain of any remaining evidentiary need or value to these other six pieces of
information that were collected from Mr. Jean's computer.

Following Mr. Jean's arraignment on the initial indictment, the defense asked for discovery, and after several back-and-forth communications between counsel, the Court understands that the government has at this point produced the following: Number one, what I refer to and understand to be known as the complete NIT computer code, which is to say, more specifically, the operating instructions that were sent to Mr. Jean's computer when he began downloading the child pornography as alleged by the government, which in this case caused Mr. Jean's computer's specific information and accompanying IP address to be sent back to the government as I've described.

Secondly, the government has produced what has been referred to as the two-way data stream between the government's computer and Mr. Jean's computer as the NIT instructions ran on and were executed by Mr. Jean's computer.

Third, the government has disclosed information from its own computers which detail the images allegedy downloaded by the user known as regalbegal, which the government now contends is Mr. Jean.

Number four, the government has turned over the
contents from Mr. Jean's computer, which it contends to be the contraband evidence it seized pursuant to the residential search warrant. Additionally the Court understands that the government may have turned over other evidence which is not necessarily related to the NIT or otherwise in dispute in this case.

To the Court's understanding, there is only really one piece of information which is in dispute, which is the means and method by which the FBI was able to exploit the Tor browser software that was utilized by regalbegal when regalbegal accessed the Playpen website.

This means and method that the FBI utilized allowed it to pass the NIT computer code through what has been described as or analogized as a quote/unquote locked door on the Tor browser such that the NIT's computer code and instructions could be run on Mr. Jean's computer.

The terminology that I understand this means and manner to be known as is an exploit, and there was information at our 1 ast hearing on the suppression issue where this was described as the exploit.

It is believed that the exploit is, in itself, a piece of software or, in other words, more code, which, unless one of the parties objects, I'm simply going to refer to that piece of software or that code as
the exploit code.
The government refuses to produce the exploit code. Number one, the government contends that under Rule 16, this information is not discoverable because it is not material to Mr. Jean's defense. As to that objection, the defendant has the burden to establish the materiality of the information that it seeks in discovery.

As a secondary matter, the government takes the position that should the Court find the exploit code to be quote/unquote material to Jean's defense, then in that event, the government is asserting what's known as the law enforcement privilege. It cites the government's need to prevent disclosure of the exploit code because it constitutes sensitive investigative tools and techniques. To the extent that we get to that assertion of privilege, it would be the government's burden to establish that it applies, given the facts and issues that are presented here.

Against that background, Mr. Alfaro, can you, before we get into your -- before we get to Mr. Miller, categorically what information, other than the exploit code, do you seek from your motion?

MR. ALFARO: Thank your Honor. I'll clarify what I think the Court has been requesting.

First I would clarify that the Court made a statement that we're requesting the complete NIT computer code, and I would like to clarify that what we are requesting is the source code for all data that was used to identify Mr. Jean.

Part of that would include the NIT code and so Dr. Miller will clarify me if $I^{\prime} m$ wrong during his testimony, but the format that I would like to lay out is the testimony, I believe, will be that in order for the NIT to do what it did, first there is a part of the software --

THE COURT: Let me interrupt you because we're already -- you're already confusing me with your terminology.

MR. ALFARO: Yes, sir.
THE COURT: I understand that as a blanket for your client's benefit and for the benefit of your defense that you want to be sure that the government knows that they -- that the defense wants everything, the entire code, but I don't know how to make the government give you specifically what you think exists unless we break that down as to what that means.

MR. ALFARO: Yes, Judge, and so --
THE COURT: And my understanding, when I use the term "the NIT code" or "the NIT instructions," my
understanding from what the government has represented, that this NIT code that was -- that they ran on an activating computer's computer, in its entirety, has been turned over, which is separate and apart from the code that they may have ran in order to get access through the so-called locked door of the Tor browser to allow the NIT code to run.

So it could be that in the way that one expert looks at the entirety of the quote/unquote source code, that could include both of those things and it could include the data that was exchanged back in forth; it could include a lot of things. But what I understand is that the government has produced the code, the NIT code that was run on regalbegal's, i.e., Mr. Jean's, computer. And when I say the word "complete," my understanding is that that is code that you or your experts could run on another computer to test its characteristics and abilities.

Secondly, I understand that the government has provided to you the clear text data that was exchanged as Mr. Jean's computer was communicating with the government's computer so that you can take the code, the NIT code, and you can take this communication from Mr. Jean's computer back to the government and determine whether or not it sent from Mr. Jean's computer what the
code was designed or engineered to do in the first place. And you don't have that in the generic sense, but you have the actual transmission of data between the government computer and Mr. Jean's computer.

Separate and apart from the NIT that ran, I understand that the government monitored and that its computers tracked the actual images or web pages within the Playpen website that regalbegal downloaded. And then you have obviously the information that they harvested incident to the residential search warrant.

So if we take the universe of all available information and we subtract the things that I've just described, what is left that you need, or that you're seeking?

MR. ALFARO: Your Honor, we are seeking the code that we believe the government has that was used to create the NIT, not what the NIT does but what was used to create the NIT and create what experts call as the unique identifier.

This unique identifier is created by an
algorithm that they're associating with a username and so when they are receiving this information back, they are saying "We know it's correct because this unique identifier we've already put into this username." What we don't know is how that information was being
collected, stored and created, and Mr. Miller will talk about why that's important.

So we are requesting all of that code that, the terminology where using is the code that generated the payload and creates this unique identifier that's being used to link the defendant and the information that is receiving to the defendant.

THE COURT: Okay. From what you've just said, I understand that in addition to the things that -well, first of all, do you dispute that the government has turned over the code and other pieces of information that I've identified?

MR. ALFARO: Judge, they've turned over a code, but it's not the code that we've asked for, and Mr. Miller will testify about what he's been able to do with what the government has turned over and what he has not been able to do with what the government has turned over. I don't think I'd be able to address that more specifically without his testimony.

THE COURT: Okay. So in addition to some aspect of what you are calling NIT code -- which is going to cause me confusion unless Mr. Miller can clarify that, which I'm sure he can -- you are also seeking whatever code has been used to generate this so-called unique identifier which, from my starting-out
understanding, is some sort of number or identifier that the NIT sent to run on regalbegal's computer and then returned that number along with the other pieces of information so that the government could match up that it had sent this information to this particular computer, and it could match up the results that were harvested from that particular computer.

MR. ALFARO: I believe so. I think another way to -- I guess another way to explain it is when -- I use the term "payload." That is what our experts use synonymously with what the government calls the NIT.

So there's a piece of software that, when it's -- when the government was getting ready to execute the NIT, or payload, it used computer software to generate an algorithm to create a unique identifier with this NIT.

So it could say we're going to send this information out with a number and we get it back with a number and that's how we're going to compare what we sent out and what we get back. And Dr. Miller will clarify that if I'm speaking different in here.

So what we're asking for is that code as well, and Dr. Miller will explain why that's necessary.

THE COURT: What about the exploit, what I've described as the exploit code? You're not asking for
that anymore?
MR. ALFARO: We are, Judge. We're asking for three parts of a four-part code. If I can give you an umbrella, the NIT is only one part of what we believe is a four-part, total grouping of information. In order for the NIT to do what it did, there is a series of steps that had to occur, and Dr. Miller will --

THE COURT: I was hoping -- that was the whole purpose that I ined out what my understanding that the two sides are saying so that I could find kind of the common ground and use the same nomenclature that we used at the earlier hearing because if I shift and start talking about payloads and all this other stuff, I don't understand what that means.

I've read it, I've reread it, I've read it a third time; still don't understand how you break out payload. Does that mean how I have defined the NIT operating instructions and how I have defined the exploit, or does it refer to everything that happened? I don't understand that. Now, it's your expert. I'm sure Mr. Miller will be able to articulate it more clearly than I was able to absorb it from his affidavit.

I get this code that generates the unique organizer. I kind of get that and how that may or may not have been provided, but beyond that, it sounds like
you're using one term as a broad term to describe something that includes part of what you already received.

MR. ALFARO: And, Judge, if I can clarify. I would state that for the most part, we have received the NIT code, which is synonymous with what experts in this field refer to generally as a payload.

THE COURT: Okay.
MR. ALFARO: A payload is a set of instructions that does something.

THE COURT: Okay.
MR. ALFARO: That would be the NIT. So we are not contesting the payload aspect of it. We were just going to educate the Court on that terminology.

Outside of the NIT, or payload, we believe that there are other parts, other programs that have coding that will run outside of the NIT or the payload that the government has in its possession that are material to Mr. Jean's case. That would include the exploit, what I just referred to as the software that generates a unique identifier, in addition to the server component, which is basically how the government collected and stored data that it received. And Dr. Miller will explain why that information is also necessary.

THE COURT: The data that it documented as it
was monitoring regalbegal's activities on the Playpen website?

MR. ALFARO: No, your Honor. The data that it received from the NIT and stored to identify Mr. Jean.

THE COURT: Is that not the two-way data stream?

MR. ALFARO: No, your Honor. And that -Dr. Miller will testify why that is not the same thing. What they received and how it is stored and collected is separate from the two-way data stream, and Dr. Miller will testify about that.

THE COURT: All right. That's helpful.
All right. Unless you have anything further to outline as to what's in dispute, you may proceed.

MR. ALFARO: Thank your Honor. At this time we call Dr. Miller to the stand.

THE COURT: All right. I'll have the clerk administer the oath to you, Mr. Miller.

THE WITNESS: Okay.
THE COURT: If you'll please raise your right hand.

CLERK CRAIG: If you could raise your right hand, please.
(Whereupon, the witness was duly sworn.)

MATTHEW MILLER,

having been first duly sworn, testified as follows:
direct examination
BY MR. ALFARO:
Q. Dr. Miller, can you please state your name for the record.
A. My name is Dr. Matthew Miller.
Q. And, Dr. Miller, how are you employed?
A. I am an assistant professor at the University of Nebraska at Kearney.
Q. And what do you teach?
A. I teach computer science and cyber security.
Q. And how long have you been employed there?
A. This is my second year at the University of Nebraska at Kearney.
Q. And you're appearing on behalf of the defense today; is that correct?
A. That is correct.
Q. And you're being paid for your work and analysis in this case?
A. Yes.
Q. Can you briefly describe your education for the Court.
A. I went to the University of Nebraska at Kearney. I graduated in 2003 with a bachelor's. I then went to

Kansas State University and got my master's and my doctorate in 2012.
Q. What was your bachelor's in 2003?
A. Computer science.
Q. And your master's?
A. Computer science.
Q. And your Ph.D.?
A. Computer science.
Q. In addition to your position as an assistant professor, can you summarize for the Court your work history?
A. So while I was going to school, we had children and so I decided to work outside the home while I was going to grad school. So I was a programmer for five and a half years at a company called The Onyx Collection.
Q. What did you do at Onyx?
A. So at Onyx I programmed computer systems. So I created software that would manage inventory. We created an entire system to allow our customers to order our product online. So it would do the entire transaction, making sure that they got what they wanted.
Q. So would it be safe to say you're a computer programmer, coder?
A. Yes, I was a computer programmer.
Q. Any other past relevant history in computer science,
work history?
A. I've also worked on several cases. I worked on the Cottom case in doing reverse engineering. So that was -- when I worked at Dakota State University, I specialized in reverse engineering and assembly.
Q. Do you have any experience or training with what we've used as a term "NITs"?
A. Yes, I have.
Q. Can you describe your training?
A. So I did training at Black Hat in order to learn how to reverse engineer computer programs or take a computer program where you do not have the source code and analyze it in order to understand what it does.

I also worked for -- worked on the Cottom case, where we had to reverse engineer the source code that the government gave us. They lost the source code and so we had to reverse engineer to verify that it did do what the search warrant said. So verified that it only sent back information in a search warrant.
Q. Can you explain what you mean when you say "reverse engineer"?
A. So when you're given a piece of computer code, initially you start off with source code, and your source code is used to create binary code. And the binary code is what actually runs on the computer, but
the source code is what a normal person would go through and read and understand the flow of the software. It's what you would debug it at.

So reverse engineering is taking this very low-level code and pulling it up one level. So you can kind of see what it does, but you don't get to see the original source code that was used to create that binary. So there's a little bit -- there's some information that is lost in that translation.
Q. Is it more difficult to have to reverse engineer something as opposed to looking at a source code?
A. Yes, it is. It is - the example would be is if you were given a building, it's a lot easier to understand how a building is built and laid out if you look at the blueprint of the building versus looking at the building after it's been constructed and trying to figure out where different beams are or doorways or hidden compartments. So it is much more difficult to reverse engineer than to just read through human-readable source code.
Q. Going back to your experience, can you -- do you have any specific certificates or training in computer coding and testing?
A. So I don't have any as far as in coding, but when you write a lot of programs, you have to learn to write
software in a good way. You learn how to do software engineering. So those are courses that you take at a university.
Q. So would that include things like malware analysis, penetration testing, reverse engineering?
A. Yes, I did -- I did do those trainings when I was at Dakota State University.
Q. You mentioned the Cottom case. Were you retained -you said you were retained as an expert to do analysis on a NIT used in that case?
A. Yes, I was.
Q. What did the government turn over in that case?
A. So in that case the government initially turned over just the -- it was Flash, which is something that runs on the Internet. So they gave us the Flash file and then they gave us access to the servers that they used in that case. And so that would have included -- that did include the source code that was used to generate the unique identifiers and log the unique identifiers. So logging is where you just, you basically write down every time something happens. You write it into a file and then you can look at that later.

After that, they also, we requested and they gave us the code that ran on the server, which in that case we called Cornhusker, that logged the information
coming to the two-way data streams that were coming from the regular Internet. So that would reveal the IP addresses of the Tor users.

So they gave us that code also. So basically all of the code that we asked for in that case they did provide to us so that we could review it.
Q. Are you familiar with the Playpen cases arising out of the use of a NIT, like this case in Mr. Jean's case?
A. Yes, I am.
Q. Can you explain how you're familiar with it? What type of work have you done?
A. So I did do consulting in the Michaud case, which was in Tacoma, Washington. There I just talked about why an exploit was something that we need in order to properly do the entire chain and verify all the code that was run. I've also -- go ahead.
Q. Have you reviewed the declaration -- the expert declaration submitted by the defense that would include Yon Castle, yourself and Dr. Tsyrklevich?
A. Yes, I have.
Q. And have you reviewed the declaration submitted by Agent Alfin?
A. Yes.
Q. I'm sorry if I cut you off. Were you about to say some other analysis?
A. There was another case, Matish, in Virginia where I actually got to look at code similar to the code that was in Mr. Jean's. So I actually got to look at the, as we call it, the NIT code in that case also.
Q. Have you reviewed the documents in Mr. Jean's case? A. Yes.
Q. And would that include the search warrant where the government describes how the NIT was to work?
A. Yes.
Q. Were you able to hear the exchange that the Court and I had regarding the information that the defense is requesting?
A. Yes.
Q. So if it's okay with you, we'11 address those concerns.

Using your training and your experience, and based upon your review of the software in this case you've been provided and the documents, can you describe what components would be required for the NIT to work as it was supposed to work as described by the government?
A. So for the NIT to work, we talk about having an exploit. So an exploit is a piece of software that does something to a computer. It's computer code that is run that modifies a system in some manner. Now, whether or not that's a permanent manner or a temporary, it
modifies the system in some way such that additional code that was sent also gets run, and we call that the NIT code.

So I have analyzed the NIT code that was provided, the binary file, and I have reverse engineered that so I could understand exactly what it did. Q. So when you say the NIT code, would that also be what experts refer to as the payload?
A. Yes.
Q. What else would have to occur during this entire process in regards to the components?
A. So in order to create the payload or the NIT that we have, so in order to create the NIT, a unique identifier was generated for each one of the users, I believe, and that unique identifier had to be generated on a server and put into the payload --
Q. When you --
A. -- and on that server -- go ahead.
Q. I'm sorry. When you say "generated on a server," what do you mean?
A. So in general when you are creating the website and you are making identifiers for users, what you do is you generate an identifier at one point and then every time a particular user comes back, you reuse the same identifier.

So the code on the server would have to
generate a unique identifier and save that somewhere and then incorporate that into the NIT so that when the NIT ran, it would send back the appropriate information that it was supposed to send back.

So every time the NIT ran, it would have to generate either a new version or what we call a cache version. So it would have to generate a version of the NIT specific to that user.
Q. And when you say a unique identifier is generated, are you talking about written code?
A. Yeah. So generating the unique identifier is going to be -- you're going to write software in order to do that. You're going to write software code to do that.
Q. And so that's like a computer programming expert that knows how to write computer code?
A. Yes.
Q. What would be the next step?
A. So after the NIT is created, then both the exploit and the payload would be sent to the user's computer. And again, there's different ways of doing this. I don't have access to which way it was, but generally you send both of them together.

The exploit runs first and then the NIT would run and then the NIT would send back information to, I
would guess, another government server.
Q. What happens after that?
A. So when that government -- that other government server receives the data, it's going to log that information. So it's going to log the unique identifier and the two-way data stream, or PCAP file that was generated when it was sent back to the government server.
Q. So if we had to use a term for that that the defense has already used, would we call that the server component?
A. That would be a server component, yes.
Q. So can you talk about what that, again, what that is so we can be -- let me rephrase that.

So if we can start again from the beginning, we have something that the defense has identified as software that generates the unique identifier?
A. $\quad \mathrm{Mm}-\mathrm{hmm}$.
Q. Is that the first step?
A. Yes, the first step.
Q. And what does that do?
A. Say that again?
Q. So can you re-explain, what does that do?
A. So that is the part that generates the unique identifiers and logs them, as well as put them into the

NIT.
Q. And that's all --
A. It incorporates --
Q. And that's all computer code?
A. Yes.
Q. A second component is the NIT, or payload?
A. Yes. The NIT, NIT and the exploit are sent to the user's computer and then the third step is the user's computer contacts another government's server, as you're calling another server, right, and it is logging the information that is received via the regular Internet.
Q. And what's the next step?
A. So that would be the entirety of the process.
Q. The entirety?
A. Right.
Q. Did you have an opportunity to review what the government has provided in this case, as in the coding information that the government has provided?
A. Yes, I have.
Q. Can you please explain to the Court what the government has provided you and what you analyzed?
A. So the government provided me with the NIT/payload.

So they gave me that information. They gave it to us as the binary file. So that would be the actual instructions that are run, but it's not, again, not the
way that a human would program it. So it was just the computer code and then they gave me a, what's called disassembly, or representation of what's in that file, but it wasn't actually the source code that was used to create it. Because if somebody was creating it by hand, they would not write it in that method, right? It's not the actual source code used to create that NIT that was sent.
Q. Is there information that could be missing?
A. Yes, there could be. Because of the process of taking computer code that is human-readable and compiling it into binary code, there is almost always necessarily a loss of information that is -- occurs.
Q. What else has the government provided?
A. They provided us with the two-way data stream. So the PCAP capture which showed the information being sent from a particular IP address to the government's computer systems.
Q. To your knowledge has the government provided any other code or information?
A. No.
Q. So we talked about the multiple components that would be required in this universe which would include the NIT being deployed. Given your training and experience, can you explain why the defense would need
access to, the first step, the software that generates the payload and injects the unique identifier?
A. So the software that was used to generate the unique identifiers has to log that information, and I believe the logging of that information is correlated to how many times regalbegal visited the website, which I believe is four.

So if that code is incorrect, there's a possibility that maybe it was only one, maybe it was ten, but that information could be incorrect if the logging component was not properly coded.
Q. So you would need to check the code for errors in how it was generated?
A. Yes.
Q. And why would we think there would be any error in the code?
A. Well, computers all the time are being updated. If you have a computer device of any sort, you are used to the fact that the computer needs to be updated all the time.

If you look at Windows or OS10 or your smart phone, all of them are updated on a regular basis because all of them are programmed by humans, and humans make mistakes.

Now, they don't make mistakes very often,
right? There's millions of lines in Windows, and there are a few mistakes that occur all of the time. So this is an issue that happens with most softwares, that there are software defects in that code, errors that occur just because humans are programming them.
Q. Is it fairly common for there to be error, unexpected errors, in code that's written?
A. Yes. That happens all the time. If you look at examples that are in the media, all the time there are software programs that are written in such a way that they have unintended consequences of how they were coded.
Q. The type of code that we're talking about in this case, is it complex enough that it would have errors?
A. I don't know because I haven't actually viewed it, but I would suppose that there is a possibility that it could have errors, yes.
Q. Regarding this algorithm or this code that's human-made for the software that creates a unique identifier, is it possible that if there is an error, it could associate different usernames with different IDs created?
A. Yes, that is possible.
Q. Given your training and experience, can you explain in your opinion why it would be necessary for the
defense to analyze the source code of the exploit?
A. So the exploit is going to take advantage of some flaw in a computer system, and because computer systems vary, it is possible that that exploit that was run may have had some unintended consequence of it running and may have, you know, inadvertently disabled a firewall or inserted a certificate into the browser so that the user would trust websites that they wouldn't.

So there are unin- -- there are possible unintended consequences with running software remotely on some computer system.
Q. So if you were able to analyze the exploit, you would be able to determine whether it operated in the manner that the government represents?
A. Yes. And that is what I did in the Cottom case. We were given the source code. We went through and verified that indeed the way that identifiers are generated was correct, that the logging was correct and we couldn't find any possible errors that were in that software system to our knowledge.
Q. Can you explain how an exploit can alter someone's computer?
A. So what happens is when an exploit runs, it runs in a way that was not expected. So a browser anticipates that something is of one type and it ends up being of
another and so it's going to do something unexpected.
Generally when you write an exploit, you try and take those flaws to your advantage so that you can run the code that you want to run, but it doesn't necessarily go as planned. So the exploit could crash the computer; it could, you know, cause some sort of error. So those are definite possibilities --
Q. Did it --
A. -- that can exist in exploits.
Q. Can it disable computer settings?
A. Yeah, you could disable the firewall; it could add additional certificates.
Q. Would that leave the computer vulnerable from outside attack, third-party attack?
A. Yeah, so -- correct. Any computer that is on the Internet, if it doesn't have a firewall, it could very definitely be taken over by some remote attacker.
Q. And what do you mean when you say "taken over"?
A. So you can write computer code such that you can completely control a computer from a remote location.

There are tools out there like Metasploit or the Social-Engineer Toolkit that allow people to basically remote control and do whatever they want with a computer system.
Q. Regarding the exploit, the witness for the
government, Agent Alfin, previously stated in his, I guess his affidavit, and I believe in a previous hearing, that he's run the exploit on a computer and not noticed any changes made to the computer.

What would be your response to that?
A. So my response would be it would depend on what settings you were looking at. So when you run a code, when you run a piece of code, it may take what we call one execution path or one way of running. And it could be that there are other execution paths that he did not test when he was running it and so we haven't gone through and looked at all those possible different execution paths. We haven't looked at all the different settings that could be looked into.

So the question would be what settings were looked into, and are there other ones that were unanticipated that were modified during that exploit being run.
Q. You're referring to pathways that a code can take. Can you clarify that a little bit more?
A. So I guess an analogy would be if you were on one side of a city and you were to walk or drive to the other side that there are a lot of different ways that you could, you know, travel in your car. And so the different pathways, he may have executed one where he
went, you know, just down Main Street and that was okay, but if you go down a different one, it ends up that we -- you know, something terrible happens, right?

And so when you are analyzing code, really you want to look at it what we call statically or do the reverse engineering and verify, okay, these are all the pathways that it could take, and none of those pathways did anything wrong with the computer, or bad to the computer.

So that's what -- if I was given the exploit, that's what I would go ahead and verify. And we would test it against a variety of different operating systems and make sure that it was -- it did indeed work as it was -- as it stated.
Q. So by running the exploit on one computer, that wouldn't be sufficient?
A. Correct. In software testing, you want to test all of the different methods, pathways through a piece of software, right? There are majors where you go through and you verify all the different pathways and make sure that nothing bad happens on any of those pathways and so that's what -- when you talk about software engineering, that's what you tend to do.
Q. So by running the exploit, that wouldn't reveal possible design flaws or errors. Is that what you're
saying?
A. It could reveal them, but it won't necessarily.

There are other execution paths that may reveal different defects.
Q. You're talking about reverse engineering and analyzing code. Given your training and experience, have you ever done that, analyzed software, tracking the pathways and things 1 ike that? Have you actually done that yourself?
A. Yes. I -- when I was programming, that was a big part of your job. One was to talk to the users and make sure you do what they want and the other one is to, when you write your code, you need to check for all the different possibilities and make sure you have a test so you can verify that your code does work in all the different situations in which you anticipate it to run.

And then there's always the other ones that you weren't anticipating a user to do that they would do, and it would, you know, possibly break things and so then you'd have to fix your code and add another test case to your test.
Q. Regarding what we are calling the server component, as you previously testified to as kind of being the last step in the process, given your training and experience, can you explain why the defense would need to analyze a

server component?

A. So I think the reason for analyzing the server component is similar to analyzing the code that ran on the Playpen website is you just need to verify that the data that was logged was logged in a correct manner and that information wasn't duplicated because of coding errors. Again, you're running code on that server; so, there's always the possibility that there exist errors because it is written by humans.
Q. So analyzing the server component, that code, can you verify whether there would have been unauthorized access by users also?
A. So that would typically be something that would be inside of the operating system that would exist on there. So we weren't given access to that. I don't think you're asking for that. But that would be an operating system sort of security measure that would have to be in place.
Q. What about verifying the correct IP addresses logged and then being linked properly? Is that part of a server component?
A. Probably not, but that would be more on the -- so all of that data would be logged and probably put into a database. So it could be useful to make sure that the IP addresses were logged properly. But again, that data
is also stored in that PCAP file. So whatever was saving that would be something that we would want to look at, I think.
Q. What was saved in the PCAP file?
A. Yeah.
Q. And what would you call that?
A. That would be a piece of software that was running on the server.
Q. Running on the server component of the government's server?
A. Yeah. There's a lot of ways of running it but, yeah, that would be one method. Again, I don't have access to that. So I don't know exactly how it was architected.
Q. Is that something that you were given access to in the Cottom case?
A. Yes, we were. We were given access to the -- al1 the code that was used to log the information. We weren't given access to the physical server because the government said that was destroyed, or gotten rid of, or something to that effect.
Q. Have you been provided that in this case?
A. No.
Q. In your training and your experience, can you explain why what the government has provided to you thus
far is not sufficient to confirm the information the government received or stored or logged is accurate? A. So we have an entire system that we're using in order to tie which user is associated with which identifier; what the data stream was.

So this entire system is built all off of software and, again, software has defects and so analyzing it would help us to make sure that there are no defects in that entire supply chain of software.
Q. Because if there was a defect, what would that mean?
A. If there was a defect, then a improper user could get their information logged, it could identify them more than once when maybe they only visited once, it -there are a lot of different possibilities. And without seeing all of the code, I can't necessarily say what those all are.
Q. So without analyzing the code, we can't just come up with every single scenario that could happen?
A. Correct. If we were given access to the code, we would be able to much more specifically decide what are the possible pathways that were bad or could have errors in them.
Q. So would it be safe to say it's difficult to articulate the defects when you don't have access to the code?
A. That would be a good characterization, yes.

MR. ALFARO: I'll pass the witness, Judge.
THE COURT: All right. Thank you.
MR. DEAN: May I inquire, Judge?
THE COURT: You may.
CROSS-EXAMINATION
BY MR. DEAN:
Q. Good afternoon, Dr. Miller. My name is Denis Dean. I'm an assistant U.S. attorney. We've never met before, have we?
A. No, we have not.
Q. I think I passed through Kearney a couple months ago. It's got the museum over it on the interstate?
A. That is correct, yes.
Q. No offense to Kearney. I just breezed right through. We didn't -- I didn't stop; I didn't visit with you.

When was the last time you were in Arkansas, sir?
A. I think I was in Arkansas this summer. We drove through on vacation.
Q. Did you stop anywhere of substance, like the FBI headquarters in Little Rock?
A. No, I did not.
Q. Okay. So you haven't reviewed any computers or any
digital evidence related to this case, correct?
A. I have reviewed some evidence in this case. The NIT and the PCAP.
Q. But Mr. Jean's computer and the evidence that was located on it you have not reviewed?
A. No, I have not.
Q. Or, for that matter, any computer involved in Playpen, in this website case that we're dealing with?
A. Correct, I have not.
Q. Okay. Doctor, to your knowledge none of the other experts that have been mentioned have looked at actual computers involved in this case; is that correct?
A. I do not believe so, no.
Q. I'm going to violate prosecutor 101 on cross by asking this question, but why haven't you don't that? A. That is not necessarily my area of expertise. I don't typically do that type of forensic analysis. I am more at the software level rather than analyzing a computer and the file system associated with it.
Q. And I can appreciate that, but wouldn't there be some value? Wouldn't it be helpful to actually look at the computer to see if anything was altered or changed or disabled?
A. It could be useful to look at and have a forensic expert look at it who is used to looking at those types
of things, but again, that's not my area of expertise. And the way that I believe the NIT ran and the exploit ran, I don't know that they would necessarily leave something that I would be able to see at this point.
Q. But they could?
A. You're right, it could, yes.
Q. Okay. So your expertise deals with a NIT.

Describe -- because I don't think I got it on direct.
Describe your methodology that you used to examine the NIT in this case.
A. Can I -- let me look just a second.

So in this case, because this was running in Linux, I had set up a Linux machine. I ran the NIT on my Linux machine and then had it connect back to a computer that I was in control over so that I could verify that the two-way data stream that it produced was consistent with the two-way data stream that I was given in the PCAP file.
Q. And?
A. And it was consistent.
Q. Okay. Now, in your -- you issued a declaration in the Michaud case out in Washington, correct?
A. Yes, that is correct.
Q. In that declaration, specifically at Paragraph 4, you state that -- and I'm quoting you -- a computer
system that has been exploited has been fundamentally altered in some way.
A. Correct.
Q. Do you recall making that statement?
A. Yes.
Q. Now, you -- and there were several people involved in the Cottom case, but you helped prepare a forensic report in that 2015 Cottom case, right?
A. That is correct.
Q. And you were one of the investigators. I think there were three or four of y'all?
A. There were three of us, yes.
Q. Okay. Did the NIT in that case make any fundamental changes to the computers on which it was executed?
A. In that case it did not make any fundamental changes.
Q. Now, in this case you mentioned something about a fundamental change. What I'm trying to wrap my brain around is what could have been changed fundamentally when there was only a temporary change when the NIT was executed and then it went right back to where it was? A. So by definition, what the NIT is -- what the exploit is going to do is it's going to run code that was not intended to be ran, and that mere fact is that it's altering the system and how it actually works.

So again, temporarily that is the case, but there is the possibility that it will modify it permanently.
Q. Okay. But then going back to your report in the Cottom case -- I'm on Page 11 here quoting -- you stated -- or the report that you were part of an author of stated the investigators -- which you were one of -do not consider NIT to be hacking in that the NIT exploited a configuration setting that did not require offensive-based actions.

Then you end with: Exploitation is not always synonymous with hacking.

Do you remember making that statement?
A. Yes. Could I clarify?
Q. Sure.
A. So in that case we didn't really consider what the FBI gave us to be an exploit. We just considered it to be a NIT that was run on the system.

So the NIT in that case took advantage of a flaw inside of Flash as opposed to exploiting the system in some way that modifies how the computer ran. So it actually ran as designed; it's just it took an advantage of a proxy setting inside of Flash.
Q. Took advantage, exploit, doesn't mean the same thing in computer world?
A. No.
Q. Okay. That's why I'm an English major. So I'm asking.

Let's move on to encryption. In Cottom you testified that the fact that the NIT data stream used a TCP connection was a particular indication of reliability.

Do you remember making that statement, or testifying?
A. I did, yes.
Q. Okay.
A. Yeah.
Q. And then in your expert report in Cottom, you stated: A TCP connection is a very reliable way of transferring data that provides for ordered data transfer, retransmission, error correction, and flow control.
A. Yes.
Q. Are you aware that Dr. Soghoian testified earlier in these proceedings that the NIT data stream was unreliable for the mere fact that it wasn't encrypted?
A. I was aware that he had testified. I didn't read that portion of the testimony.
Q. Okay. Now that I've represented that to you, it doesn't sound like you agree with that necessarily.
A. I don't necessarily agree with that statement in that TCP is a fairly reliable method. Again, there are other issues that could be at play when you're talking about just making a TCP connection.

There's methods of doing proxies that would make it so that an IP address from one computer would appear to be -- would be used by some other user. So there are other situations where the data acquired from that would not be correct.
Q. Okay. But in that report -- again, I'm quoting again: TCP connections are the standard method of data transmission for critical over-the-Internet-based activity such as commerce, authentication, banking, and the transmission of other sensitive information.

You said --
A. Correct. And I -- also in there we stated there are other possibilities that could have occurred.
Q. Okay.
A. Other situations that would identify the same user using TCP. So there is TCP and then there is, was it used in a proper manner.
Q. Okay. Fair enough.

The server component, or data storage component, I don't want to use too many different terms, but you understand what I'm talking about when I say
that, right?
A. So you're talking about the one that logged the information, the PCAP files, or --
Q. The data storage component. The logged data that was captured from the NIT, correct?
A. Okay.
Q. Follow me. Isn't it true that if you compared the raw network data from the NIT to the data that was provided to defense in discovery and determined that they were identical, then the server storing the data must have stored and reproduced it accurately?
A. I don't know if that's necessarily a fair comparison. It was consistent. Again, I'm not running on the exact same IP address. So again, I have no way to verify that.
Q. Okay. But if the datasets don't match, then how could the storage component have failed?
A. Wel1, again --
Q. I mean --
A. If you look at the --
Q. I worded that weird. The datasets match. We know that. So how could that component have failed?
A. So it could be that that component logged information that was incorrect and it matched some other user's information. I haven't looked at it, so I do not
know exactly how it worked.
Q. Okay.
A. I did say that they are consistent, but I can't verify that it was 100 percent correct.
Q. Is it fair to say that the purposes of the tools that the FBI used in this case ultimately was to match a username on the Playpen website to a real person?
A. I think to an IP address, if that's correct.
Q. Which then you could trace, using subpoenas, to a real person? That's the whole purpose of this?
A. Correct.
Q. And it sounds like you're aware that in this case, the FBI has alleged the real world identity of "regalbegal" as the defendant, Anthony Allen Jean?
A. Correct.
Q. And I assume that you're also aware that Mr. Jean confessed to using the moniker "regalbegal" online?
A. That was -- that was provided to me at some point, yes.
Q. Well, would the fact that Mr. Jean confessed to being regalbegal lead you to opine that the tools used by the FBI in this investigation functioned properly in that they identified Mr. Jean as "regalbegal"?
A. I don't know if I could make that conclusion. I know that if that's what he said, then I can't dispute
that.
Q. Fair enough, Doctor.

MR. DEAN: That's all 1 have, your Honor.
THE COURT: Thank you.
Anything further, Mr. Alfaro?
MR. ALFARO: Just a few questions, if I may.
THE COURT: A11 right.
REDIRECT EXAMINATION
BY MR. ALFARO:
Q. You were asked on cross-examination, Doctor, about the possibility of analyzing the defendant's computer. Is that correct?
A. Correct.
Q. Are you familiar with what happens to data on a computer over time? Does it become overwritten?
A. Yes. So every time your computer reboots, right, it's going to clean up data files. So if there were changes to the computer, eventually they could be corrected or deleted or removed. If you update your operating system, they might be changed. So computers are inherently rewritable and changeable all the time.
Q. So it's possible that if sufficient time has passed, anything that was available on a computer, after a passage of time, is no longer there?
A. So I would agree that as time passes, you get less
and less reliable information and more of it can degrade or be overwritten by your computer, yes.
Q. You testified that in the Cottom case, the software that you analyzed didn't make any fundamental changes. A. Correct. I -- in that case, we don't believe that it used what we call an exploit. It was just the NIT payload.
Q. Did you know that before you analyzed it?
A. No, I did not.

MR. ALFARO: No further questions, Judge.
THE COURT: All right.
EXAMINATION
BY THE COURT:
Q. Mr. Miller, you have explained that you have, in fact, examined the NIT code and you set up a Linux environment to do an experiment, and you have described the results of your experiment.

Based on your analysis of what has been described as the NIT code, do you have any reason to believe that any of that code would have remained on an activating user's computer such as Mr. Jean's computer in this case?
A. I would have no idea if it remained or not because the exploit would be the thing that would have removed that after it ran.
Q. If you had examined, or if a person had examined Mr. Jean's computer, would that be a way that they could see if the NIT or any remnants of the NIT remained on Mr. Jean's computer?
A. I would highly doubt that any remnants of the NIT would be left over on the computer. That would be my best guess.
Q. All right. One of the -- well, Mr. Alfaro was asking you some questions about the information that you didn't have and why, as a matter of precaution, it would be helpful to have that information so you could rule out some theoretical possibilities. One of the things that was mentioned is that settings could be changed such that a third party could come in and do nefarious things on the computer. Do you recall that testimony? A. Yes, I do.
Q. Were you aware that Agent Alfin has previously testified in this case that the NIT in Mr. Jean's specific situation passed through the locked door of the Tor browser, ran on Jean's computer, and returned the information back to the government server in a matter of approximately 0.27 seconds?
A. Yes. I have heard that, yes.
Q. If someone was going to do something nefarious to Mr. Jean's computer in terms of taking control over it
or downloading some things that he didn't want on his computer, would that have to occur in the 0.27 seconds?
A. No. So if somebody was -- if somebody was controlling his computer, they could have done it themselves and he would have maybe not been present, even at the computer, when that occurred.
Q. Well, how would the NIT have left that possibility open if it didn't leave any remnants behind on the computer?
A. So it's not the NIT that would leave the remnants. It would be the exploit. And if you remember, the exploit is going to run and then it's going to run the NIT, which sends back the information. So the exploit is 1 ike your lock pick which you use to open the door and let the NIT in so that it can get this information.
Q. So the --
A. So --
Q. I'm sorry.
A. Go ahead.
Q. So the third party that would be doing, potentially, these nefarious things to the computer would have to have access to the exploit?
A. Yes. And when the $F B I$ was running this, they were actively sending the exploit to all of the users of that website. So anybody on that website would have received
at one point a copy of that exploit if they had a copy, they could have leveraged that to do whatever they wanted.

So if it was an exploit just for Tor browsers, then they could have attacked anybody that was on the Tor network.
Q. And what sort of preparedness would a person have had to have lined up in advance in order to be catching or monitoring or preserving the exploit?
A. So they would have to have been proactive and believe that maybe they were being monitored because they were accessing some website that had illegal material.

So they would have had to have been active in understanding and advanced. So they would have to, you know, understand how all of this works, how do you capture data streams and how do you get the exploit out of there and use it again.

So it would be a fairly sophisticated user in order to do that.
Q. Do you consider yourself fairly knowledgeable in the field of malicious and ethical hacking and countermeasures to employ against hacking?
A. I do understand how they work, and I have used them, yes. I guess I don't know where your question is
leading, but --
Q. Well, I guess my question is this theoretical person that potentially could have done something nefarious to Mr. Jean's computer, had they been well prepared and had the sophisticated means, are such people lurking around on the Internet waiting for such opportunities?
A. Yes, there are. There are a lot of -- a lot of people and a lot of business reasons why people do -have such techniques for logging this information.

If you're trying to protect your corporate assets, we call these people "blue teamers." They are very much trying to monitor their information, monitor what information is going out so that they can defend against people who are attacking.

So there are both, you know, people who are hackers, or red teamers, and there's blue teamers. So there's two different groups that, we're always in training, we're always going to conferences, learning the new technique. So there are a fair amount of people that do this, yes.
Q. Well, this imaginary person or hypothetical person with nefarious purposes in mind that would have to be, A, sophisticated and, B, set up in advance, would they have to be monitoring the Playpen website at the right precise time or just monitoring the Tor browser in
genera1?
A. They could have done either one. Those are definite possibilities. So if they were concerned about their Tor browser doing something, you know, like running this NIT, they could have been proactive and set it up so that they would log this information so they would know what the exploit was, what the payload is.

So they could have done some of that in advance; or they could be doing every, you know, Tor website. They could check and see if anything has changed. So it's definitely a possibility. You know, I can't tell what the odds are that somebody would do that, but it's a possibility.
Q. A11 right. We11, one of the questions for the Court is to examine whether this issue that has been raised about the government's lack of providing the exploit code, the Court has to determine, in the legal sense of the word, whether ruling out this potentiality is really a material issue or not.

So I am trying to gain some sense for whether what you have described as this sophisticated person that had advance knowledge, that everything lined up and was looking at the right place and the right time, is that something that is probable, likely, possible, or does it fall in a lower end of technically
possible but realistically unlikely?
A. So I would say that it would be more than very unlikely. It would be above that because a lot of the people who are visiting these type of sites realize that they are a prime target of people like the FBI.

So they are very much paranoid in that sense, right, because they understand that they can't do this on the regular Internet. So they do realize that they can't just do it on the regular Internet. They have to go to Tor. And so you're looking at a much more paranoid population than your regular Internet user.

Like, somebody who's using Facebook does not care that Facebook is sending back information about them. So it's very much a more sophisticated audience. Q. So they would be -- and I'm exaggerating a little bit here, but just help me understand. Would it be a situation where such a user would be -- perhaps have more than one screen, and on one screen, they're viewing or accessing website content, and then on another screen view it in a programmer -- view that same content but in a programmer's type language?
A. Yeah. So you could be viewing -- you could be viewing the actual page and then you can have software that's running in the background that would log all of the information that's going on, see if the page has
changed from the 1 ast time that you viewed it in some substantial way.

So that is definitely something that people do. People do use that type of software and develop that type of software.
Q. And there are obviously, as you described, blue teams in all different sorts of corporate environments. In any of the cases that you have been associated with as a consultant, have you ever run across some third party who was capturing this software in the background for the very purpose of being in a position to do something nefarious with it after the fact?
A. Yes. People do do that. They will look at -especially people who are trying to defend networks. They won't use it maliciously, but they will capture that information. And the mere fact that they captured it, they would have the ability to use it if they so desired.

So that's what a lot of corporations are trying to do is trying to figure out what -- which of their computer systems have been compromised and so they use software that logs that information. And that type of software is available for people to use.
Q. A11 right. If I can paraphrase your earlier testimony, you've said that you wouldn't rank it as
something that was likely to have happened but probably somewhere above very unlikely to have happened.

If you take the starting point as something that is very, just a little -- or at some point above very unlikely to have happened and you put that into the context of the government's contention here that Mr. Jean has admitted that he used the regalbegal avatar and has admitted that he downloaded child pornography from the Playpen website, what does that do to your relatively -- relativity scale of some third party obtaining this code and surreptitiously getting on Mr. Jean's computer and putting other material there?
A. Given that evidence, I would say it's much less likely.
Q. All right. Now, the Cottom case that you have talked about, my understanding from what I could gather in looking at that docket in that case is that the defendant's position and the theory of the defense in that case was that there was no evidence that Cottom had made any effort to download any specific image from the website in question. Is that correct?
A. I believe so, yes.
Q. And I believe it was also the defense position, if I'm understanding it correctly -- and you correct me if you recall otherwise -- but my understanding is that the
defense took the position that there were not any images on his computer that originated from the website in question in that case. Is that correct?
A. I don't recall the specifics on that part. Again, I didn't -- I don't really do sort of computer analysis but, you know, I know they had found files in sort of what we call slack space or where -- you know, where the computer says it's going to delete something but then it just sort of marks it with an X saying it's going to delete it later. So I would have to -- I would have to look again. That wasn't my part of the analysis that I did.
Q. On the unique identifier, to the extent that the government is accurate in stating that Mr. Jean has admitted to using the regalbegal avatar and has admitted to downloading images from the Playpen website, how would you characterize the materiality of needing to know how the algorithm was coded to generate a unique identifier number?
A. So my guess would be the only -- I'm given that that additional evidence, the benefit of having it would be to know whether or not that number, which was four, was high or low. Did it accidentally log it four times because of something or did it not log it -- you know, it was supposed to be ten and it only did four.

So that would be the extent of what we could say on that end.
Q. All right. I believe you said that you have read Agent Alfin's affidavits in other cases; is that right?
A. Yes, that is correct.
Q. Do I recall correctly that he has testified by affidavit in other cases that he's conducted an analysis of matching up the unique identifiers that were originated and being able to match all of those up with the information that came back from the activating computers?
A. Yes, I believe that's what he's testifying.
Q. To the extent that that is accurate or credible, what impact does that have on this theoretical possibility that you have explained about the identifiers?
A. I don't -- I don't know if it necessarily changes that. Again, we haven't had to -- we haven't looked at it to see are there possible errors in the code that generated it. So...

MR. DEAN: I think we just lost him.
CLERK CRAIG: Tyler?
(Short interruption of proceedings.)
THE COURT: Sorry about that, Mr. Miller.
THE WITNESS: That's all right.
Q. You said that you were provided with the NIT code in this case, which, I understand that the term "payload code" would be synonymous with the term of how I've described the term "NIT code." Is that right?
A. That is correct.
Q. And that was provided to you in a binary format?
A. Yes.
Q. And you were saying that it would be -- have been more helpful to you if it was provided in a more reader-friendly version? Is that right?
A. That is correct.
Q. What would be the name of a more reader-friendly version that you believe the FBI -- or the government would be capable of producing it in?
A. So generally when you -- the human-readable version of it is called source code and then when you use what we call compiler, you generate the binary code that would be sent and run.
Q. Is the term "source code," is that a language, or is that a descriptive term of just the human-readable form?
A. So it's the descriptive term. There are lots of different languages you could write it in. We have Java and C. There's a lot of different languages we could write it in as humans, but if it's going to get run on the computer, it has to be converted from that human
language into the computer language and that's the binary code.
Q. All right. So given that, what is your criticism of being provided the binary code as opposed to more -some more human-readable format?
A. Well, partially because it makes it much more difficult to read because when you take that binary code and you bring it up one level to something that's human-readable, it's much more difficult to read.

So, for example, if we look at the report that
I gave -- and I don't know if you have a copy of it, but in part of their -- of the NIT, there was actual human-readable code. There were what we call comments which describe what it's going to do, and it helps to verify that something -- when you're writing code, you put in comments so you know what it's doing.

And so my criticism would be that they weren't providing us with the actual source code. They were just providing us with the binary code. And again, it makes my job much more difficult. It takes longer to do $i t$.

And there are possibilities that I could miss something or that something in the source code, you know, maybe it had a specific condition that it generated different source code. I wouldn't be able to
see that if I don't have the original source code that was used to generate that.
Q. Well, which language, programming language, are you most familiar with that would -- that you think that the government could reasonably provide -- what language could they reasonably provide source code in that you would be most familiar with?
A. I would be familiar with whatever they provided. I don't know what they used. They could have used assembly or they could have probably used C, which are two different languages, but again, I don't have -- I don't know what they use, but whatever I would be given, I would be able to analyze because most programming languages that are human-readable are fairly easy to pick up when you know one of them and just learn another one really quickly. But I'm familiar with a lot of different languages.
Q. Are there not any -- is there not any software that takes the binary code and translates it back to a programming language, a source code language?
A. So can I -- this might be a little bit complicated, but if you start with, I said C.
Q. Yeah.
A. And so C you're going to generate an assembly, which is a lower level than C and then you're going to
generate binary. In this process, you lose information. So information 1 ike comments go away.

Information about labels, about different conditions that generate different code will all go away and so when you pull it back up one level, you're only going one level, not clear to the source code. So there's information that's inherently lost in doing this.

And, yes, I do have a program that does it, and I brought it up and I've analyzed, you know, four or five of these and so I 'm getting fairly good at reading it, but again, it didn't feel like a good faith effort for them to not provide us with the actual source code. Q. You mention that you were retained in some of the other cases that originated -- or that evolved out of the Playpen criminal litigation. I believe Michaud and Matish?
A. Matish, yes.
Q. Matish? Did you run the NIT code on either of the subject computers in either of those cases?
A. So I did not get the code in Michaud. In Matish I was given the code. And I didn't run it on their computer; I ran it in my test environment. And again, I got similar data in those cases. It was consistent with the PCAP -- or the data stream that was provided.
Q. Al1 right.

THE COURT: Mr. Alfaro, does that prompt
anything further?
MR. ALFARO: It does, your Honor.
REDIRECT-EXAMINATION
BY MR. ALFARO:
Q. Dr. Miller, the Court asked you about these people that may have nefarious purposes, that were monitoring these type of websites. Do you remember that?
A. Yes.
Q. Are you familiar with such a thing happening in 2013 when someone actually caught the exploit?
A. I don't recall that case, but I'm -- if you have one, I'm sure that it references what you said.
Q. Does it sound familiar, the Tor Mail case?
A. Yes, I do recall seeing some NIT source code that was released for a different NIT that was deployed. So I have seen that one.
Q. So in the past there's actually been someone that's got --

MR. DEAN: Objection. I don't see how this is relevant. He said it was a different source code. He wasn't even familiar with it until he led him do it. I just, I don't really want --

THE COURT: Well, the Court opened the door to whether this stuff is actually going on. So I think
that's a fair followup.
MR. ALFARO: Yes, Judge.
Q. So in that Tor Mail case, there was actually someone monitoring the exploit and they caught it?
A. Correct.
Q. In your opinion would it be helpful for the defense to have a copy of the source code?
A. Yes, it would.
Q. Would it be helpful for the defense to have a copy of the source code for the exploit? Clarify that question.
A. So for the exploit, I don't necessarily know if there would be source code for the exploit. A lot of times exploits are written in such a way that you don't generate -- you don't have source code in order to generate them. So I don't even know if that exists or not.
Q. Would it be helpful for the defense to analyze what we are referring to as the exploit in any language? A. Yes. So if we were given the binary exploit, we would be able to -- I would be able to reverse engineer it up to that assembly level, and I'd be able to do some analysis on it just 1 ike I did with the NIT that was provided.
Q. Would it be helpful for the defense to review the
server component aspect we discussed?
A. Yes. If we were able to review it as I did in

Cottom, we would be able to verify that it generated the correct unique identifiers and that it logged that information in a proper format that wasn't - couldn't be modified after the fact and things like that.
Q. And the same for the unique identifiers?
A. Yep.

MR. ALFARO: That's all I have.
THE COURT: Mr. Dean?
MR. DEAN: I don't have anything further, your Honor.

THE COURT: A11 right. Mr. Alfaro, may Mr. Miller be excused, or would you 1 ike him to participate via video or standby via video?

MR. ALFARO: Judge, if it's all right with the Court, I would 1 ike him to remain and 1 isten via video in case I need to call him via rebuttal witness.

THE COURT: Al1 right. That's fine. Any other witnesses, Mr. Alfaro?

MR. ALFARO: No other witnesses, your Honor.
THE COURT: A11 right. Mr. Dean, you may proceed.

MR. DEAN: I'11 cal1 Special Agent Danie1 Alfin.

THE COURT: Agent Alfin, if you'd please approach the bench and raise your right hand.

DANIEL ALFIN,
having been first duly sworn, testified as follows:
THE COURT: You may inquire.
MR. DEAN: Thank your Honor.
DIRECT EXAMINATION
BY MR. DEAN:
Q. Please reintroduce yourself to the Court.
A. Good afternoon. My name is Daniel Alfin, last name spelled A-1-f-i-n. I am a special agent with the FBI. I am currently assigned to FBI headquarters, Criminal Investigative Division, Violent Crimes Against Children section, Major Case Coordination unit, located in Maryland.
Q. And how long have you been employed by the Federal Bureau of Investigation?
A. I have been a special agent with the FBI since 2009.
Q. And are you the case agent for the national Playpen investigation that's at issue in this case?
A. I am.
Q. And in fact, you previously testified in this Court,

I believe it was back in May, regarding a hearing on defendant's motion to suppress?
A. Yes, I did.
Q. Have you reviewed that testimony that you gave previously to the Court back in May?
A. I have. I have read the transcript of that hearing.
Q. Is there anything that, after reading that transcript, you feel you need to address or correct?
A. There is. There was a small misstatement in my testimony. I wasn't sure after the fact if I had misspoken or if I didn't speak clearly into the microphone, but on one page of the transcript, I am quoted as saying that the Tor network is comprised of hundreds of thousands of computers. I meant to say hundreds or thousands of computers.

I believe the Tor network currently stands somewhere between 7- and 8,000 nodes around the world, not hundreds of thousands. If I did misstate that, that was not intentional.
Q. Is that a real important issue in that suppression hearing?
A. It is not, but I wanted to correct my testimony, as it was not factually accurate as it was written.
Q. Okay. And you want to perfect your testimony because, are you testifying in other courts around the country?
A. I am testifying in numerous cases.
Q. All right. Thank you, Agent Alfin.

Moving on to the current issue and that's the motion to compel, did you author a declaration pertaining to this matter in United States versus Matish?
A. I did.
Q. Please describe for the Court what information and evidence has been provided to the defendant, Anthony Jean, regarding this case.
A. In the matter at hand, the defendant has been provided with what has been referred to thus far by the government as the NIT. It has also been referred to as the payload.

This piece of evidence is all that would be needed in order to verify that the government did not exceed the scope of the -- what has been referred to as the NIT warrant.

Importantly the payload that was provided, the binary file that Dr. Miller analyzed, it can be executed and tested as I have done, as Dr. Miller has also done, and its output can be observed.

So if you were to run this, the payload, on a computer, you would actually see it reach out to the Internet and send the items that the NIT warrant authorized it to collect to the IP address of the government server. You would also see that contained in
that data stream is nothing other than what was authorized by the NIT warrant.

In addition to that, it is worth noting that we turned over the two-way data stream that resulted as a result of the execution of the NIT on Mr. Jean's computer, and what's important in this is that it is a two-way data stream.

So you can see both ends of the communication. Mr. Jean's computer reaches out to the government server, it acknowledges that connection, data is exchanged, and the connection is closed.

You can see that the -- that Mr. Jean's computer sent the information that it was authorized to collect to the government server, and you can see that in response to that, the government server did not send images of child pornography back to his computer. It didn't respond and send any additional instructions to his computer.

After Mr. Jean's computer sent the information, the connection was closed. As previously noted by the Court, that communication took approximately . 27 seconds.

And so these two pieces of information can be used to verify everything that the defense would need in order to verify that the tools used by the government
functioned as intended and that they did not exceed the scope of the search warrant. Again, they can be tested, they can be analyzed, their output can be observed, and they can be compared to what was collected by the government in Mr. Jean's case to confirm that the tools worked as intended.

The other significance of the PCAP data, the two-way network data stream, is that what we collected and what we provided to Dr. Miller for analysis is the actual raw data that the government collected. This is as it came into the government server before it touched any server components, before it got into what's been referred to as a network component or a server storage component. This was the actual raw data.

And so you can take this actual raw data, and you can compare it to what was provided to Mr. Jean in a report that he was given. You can see that the report accurately reflects the raw data that was collected.

Comparing these two datasets, assuming that they match -- and they do match in this case -- there is no way that the data storage component could have failed because we know that before - we had the data before it even hit this data storage component and so if the data matches on the front end to the data that was provided on the back end, there is no -- there is no possibility
that the data was stored improperly. It matches on both ends; so it was clearly not tampered with, intentionally or unintentionally, while it was on any government server in storage.
Q. And those are the two main components that have been turned over to the defendant?
A. Correct.
Q. What has not been turned over to the defendant in this case that, by the testimony and statements made here today, you think they're requesting?
A. The Court, in opening, I believe clearly laid out the requests that defense has made, and those -- and the Court's understanding is accurate.

The one item that the defense is requesting is the exploit that was used in this case, and as the Court accurately described, the exploit could be thought of as tools and methods that allow for the execution of the NIT, the NIT being what actually collects data and sends it back to the government. That exploit has not been turned over to defense. The government has maintained the position that it is not material.

Another item that has not been turned over to defense or described to defense is the methodology by which unique identifiers were generated in this case. That information has also not been provided.

On the matter of the unique identifiers,
Dr. Miller in his testimony earlier today, misstated the purpose of the unique identifier. I don't believe that this was an intentional misstatement, but to clarify, the unique identifiers that were generated, their purpose was not to track user activity on the website. They were not stored and then 1 ater correlated to future logins should regalbegal come back, I believe it was four times.

That unique identifier that was used as part of the NIT was not responsible for tracking user activity on the website or correlating different login sessions. The purpose of the unique identifier, when it was generated, it was injected into the NIT and it was sent along with the data being used by the user, in this case regalbegal. And when that unique identifier comes back in NIT results, we can match it up and say this unique identifier went to regalbegal, this is the IP address that it came from, so this is the IP address that we are alleging is associated with regalbegal.

Again, the unique identifier does not track user activity on the website or correlate various login sessions.
Q. So the unique identifier was a one-time thing during that . 27 seconds when the NIT was going back and forth?
A. Correct. I believe what Dr. Miller was associating the unique identifier with on message boards is commonly referred to as a session ID or a session identifier. Separate issue from the unique identifiers that were part of the NIT.
Q. So the statement for four times on the website, high or low, that means nothing with the unique identifier? A. Correct. That is -- that is a completely separate issue.
Q. Now, you've mentioned two things that the defense seems to want that the government hasn't turned over, but we heard about a third one. What about this issue of the code used to create the NIT that they are asking for?
A. The -- so it became, I believe, more clear to me early today, recently hearing Dr. Miller testify. And so what has been turned over is the binary code and an assembly representation of that code. Assembly language is commonly referred to as a low-level programming 1 anguage.

Typically, as Dr. Miller testified to accurately, programming code is written in higher level languages. A number that Dr. Miller noted were I believe C, Java, and he may have mentioned some other ones. And so those are languages that are easy to look
at and easy to read and code in.
And so at a certain point in the process of compiling code, you end up with assembly code, which is not user-friendly. It's not easy to look at and immediately know what it does. And so I believe the assumption has been to this point that the NIT was originally written in one of these higher level, user-friendly codes.

That is not the case. The NIT that was used in this case was actually written in assembly language, and assembly language does have an either one-to-one or near one-to-one relationship with the actual binary code that is being run. And so if a program was written in assembly language, then looking at the material that we provided, you can accurately come to conclusions about what the code does and does not do.
Q. So as far as that request, it is what it is, and anything else doesn't exist?
A. Correct. There is no high-level source code. I believe that's what defense was requesting.
Q. Could turning over the unique identifier generator or the exploit, in your opinion, aid the defense in any way?
A. No.
Q. Explain your basis for that opinion.
A. I've provided previous testimony, and it's also referenced in my affidavit. First, with the exploit. Looking at the exploit -- and again, the exploit is what enabled us to run the NIT on the computer. I believe Dr. Miller's description of this in his testimony was accurate in as much as what the exploit allowed us to do in this case.

Comparing that to making entry into a physical house when you execute a search warrant, if you use a lock pick to enter a house, you can look at the lock pick as long as you want. It's never going to tell you what agents did after they entered the house.

A lock pick doesn't seize evidence. It doesn't do anything material. After the lock pick serves its purpose, agents go into the house, they seize items, they take pictures. And so if you want to know what was actually done on the defendant's computer, we provided the defense everything that they need to do that.

We provided them with the NIT. It can be tested. I have tested it. Dr. Miller has tested it, and I believe Dr. Miller also testified earlier that the output that he observed did appear to match what the government has provided in discovery that we have alleged has come from Mr. Jean's computer.

And so looking at the exploit has no bearing on
any of the actual evidence in this case. The same thing applies to the software used to generate and inject a unique identifier. I have looked at all the unique identifiers generated in this case. They are, in fact, unique. Generating unique identifiers is not a difficult process. There are numbers of programming, software functions and libraries that serve this purpose. It is not a difficult thing to do. More importantly, in this case it was done properly. They were al1 unique.

And I'11 go a step further and say that for the sake of argument, had there been some failure, had they not been unique, it would still have no bearing on this matter because, again, the purpose of all the tools used in this case was to associate a member on the Playpen website with a person in the real world, and we did that in this case.

That individual, Mr. Jean, confessed to what we alleged he did and so even if there was some gitich, a unique number was generated more than once, it would still have no bearing on the matter at hand. Unique identifiers were, in fact, unique in this case. So it's a nonissue. However, any alleged glitch in that software would still have no bearing on this matter. Q. Agent Alfin, are you familiar with Dr. Miller's
expert report that he issued in the Cottom case?
A. Yes. I've read it.
Q. And he said in that case the exploit -- he didn't refer to it as an exploit. He referred to it as something that enables you to get to -- I mean, he basically said "exploit" without saying "exploit" as a synonym. But what is the difference between the exploit-type piece of software that was used in the Cottom case and the one involving this case that we have not turned over at all?
A. Well, first of all, the Cottom report does actually say "exploit." So it does go into -- in the page of the report describing that function, it does actually use the word "exploit."

I know Dr. Miller testified earlier that -- I believe he said that his -- he and his colleagues did not necessarily consider the NIT in that case or, rather, there to be any exploit in that case, but the report does say "exploit." And so Dr. Miller also testified that the government turned over everything, or almost everything, that the defense experts had requested in that case.

I will -- I think it's important to note in that case the government did not concede materiality for the items that were turned over, but they were turned
over for that analysis.
Q. What was the -- then if we're calling them both exploits, was there a difference in the exploit in Cottom and the one involving Mr. Jean, and if so, what is the difference in that exploit? Why was it turned over in one and not in this one?
A. So again, we did not concede materiality in the Cottom case. However, there was -- there was nothing sensitive in the -- in the Cottom case. It was a well-known published exploit that I believe at the time of the analysis was no longer viable. It didn't work anymore.

The Tor browser now has protections against that sort of thing. I believe it had protections against that sort of thing at the time, but they have since been made much stronger. And so, again, we did not concede materiality in that case, but there was -there was nothing sensitive about any of the tools or technologies used in that case.
Q. Fair to say that Cottom involved off-the-shelf technology and Jean -- Playpen -- involved still-sensitive technology that can be used?
A. There is law enforcement-sensitive material involved in the Playpen matter and that was not the case at the time of the analysis in the Cottom case.
Q. You were present for Dr. Miller's testimony, correct?
A. I was.
Q. When we got into the -- or he got into the discussion about blue teamers able to possibly hack Playpen, do you agree with his analysis about the sophistication that a hacker would have to have? Just that whole 1 ine of testimony, what is your opinion on that?
A. So in order for a -- someone to have captured the FBI's exploit in this case, that individual, first of all, would have had to have been an active member of the Playpen website. There was not an exploit or an operation where we were just blasting things out to every user of the Tor network. This was specific to the Playpen website.

And so, first of all, in order for someone to have captured the FBI's exploit, they would have had to be a member of the Playpen website, and they also would have had to be doing a number of things.

First of all, they would have to have been -well, aware of the FBI's operation in order to know to even look for such an exploit. But second of all, they would have had to have the capability and software configured on their computer to intercept traffic
between the Tor proxy on their computer, or traffic going into and out of the Tor proxy on their computer. I've testified, I believe last time in the previous hearing, that data going over the Tor network is encrypted. With Tor hidden services, such as the case with the Playpen website, that is end-to-end encryption. So the data is encrypted at your computer, and it is encrypted at the destination server.

So, first of al1, that precludes someone who knows about the Playpen website from just, even if they know where it is, from monitoring activity going to and from that Playpen website. That data is all encrypted; it would do them no good. So they are not able to get the exploit there, if they even know about the operation.

Now going back to what it would take for a member of the P laypen website to have captured the exploit, they have to be monitoring traffic on their local computer, going to and from the Tor proxy on their computer.

When you are connecting the websites, in this case downloading child pornography through the Tor network, that is a massive amount of data to go through. And in order to realistically find that exploit, you would likely need to have firsthand knowledge of it on
the front end. You'd have to know what you're looking for really.

The odds of someone, A, knowing about the FBI's operation, knowing that we were using this exploit and then having the tools and capabilities to capture and analyze all the data going to and from the Tor proxy and their computer and then actually finding that exploit in a format that they could actually reuse it for their own purposes I would say is zero, whatever tiny number is slightly higher than zero.

It is a farfetched theoretical possibility.
There is no evidence to suggest that anything like that occurred in this case at all.

I would also note that in the description that was given for, I believe defense referred to it as the Tor Mail case, that was a completely separate operation with separate tools and techniques used in that case, a significant difference being from the two cases: There were legitimate uses of some of the websites that were hosted on the servers that had been taken over by the government.

Tor Mail itself was not illegal. It was certainly frequently used for illegal purposes, but you could have a Tor Mail account; you could use the Tor Mail website without committing a crime, so the odds
of someone, you know, finding an exploit there.
I would also note that the exploit was deployed in that case in a much different manner than in Playpen. So there was no one-to-one comparison that could be drawn but someone could legitimately, a security researcher could go to a website like Tor Mail, if it hadn't been compromised, and look for anomalies, look for exploits, things of that nature.

The Playpen website did not have legal functions. It was a child pornography website. So again, the odds of someone actually finding and utilizing the exploit that was deployed in this case for the approximately 13 or 14 days that the FBI had control of the Playpen website is next to zero.
Q. Thank you.

MR. DEAN: Your Honor, that's all I have.
THE COURT: Thank you.
Mr. Alfaro?
MR. ALFARO: Yes.

CROSS-EXAMINATION

BY MR. ALFARO:
Q. Agent Alfin, the fact that a website is legal or illegal changes your analysis of how someone can capture an exploit?
A. Certainly.
Q. Why is that?
A. Well, as I said, on a legal website, you're likely to have security researchers. You're likely to have people, more people with significant technical expertise who can do these types of things, who maybe -- may be looking for that type of stuff.
Q. So you're --
A. You're not going to find -- can I finish answering?
Q. Yes, sir.
A. You're not going to find a user base on a website whose purpose is illegal. There's no security researcher exemption for becoming a member of a child pornography website.
Q. So is it your opinion that the majority of the users of Playpen were not sophisticated?
A. Sophisticated in what manner?
Q. Had the sophisticated expertise or ability to do something 1 ike what happened in Tor Mail case versus the Playpen case?
A. I would say based on my training and experience and being familiar with the various Playpen cases, the majority of users on the Playpen website that I'm aware of would likely not have the expertise to capture an exploit in the wild and retool it for their own purposes.
Q. How many people is that?
A. How many people is what?
Q. The people that you're familiar with that don't have the expertise.
A. I believe it's the approximately 200 or so people that have been arrested. That's a public stat. I don't know if it was released in this case or a separate one, but I think that's still relatively accurate.
Q. How many people -- how many times was a NIT deployed?
A. Against Mr. Jean? Once.
Q. How many times was a NIT deployed in your operation of Playpen?

MR. DEAN: Objection. I think we got into this in the suppression hearing, your Honor, and I don't think it was relevant then; I don't think it's relevant now.

THE COURT: Mr. Alfaro?
MR. ALFARO: I think it's relevant now if Agent Alfin is representing the majority of the people don't have the capacity to do what is possible in regards of getting this exploit. If he's analyzed 200 people, okay, out of how many? 200 out of 250 ? That lends credibility to his testimony. 200 out of 100,000 people or more, I think that calls into question his statement.

Moreover, I think the higher the number, the more risk that is present in someone capturing this. So I think that information is extremely relevant.

THE COURT: Well, I get your argument. You can certainly -- that's kind of commonsensical and I can certainly appreciate that argument but I don't know that for purposes --

MR. ALFARO: Judge, I apologize. I can't hear very well.

THE COURT: I said that I can appreciate the commonsense nature of that argument in the sense that if they have arrested 200 people and they believe that it was deployed more than that, then they don't have everyone that may have accessed the site and, therefore, they don't have a way of measuring their level of sophistication.

I think you're trying to squeeze out the Nth degree of some point that is not really necessary and would justify going down that path for the reasons that we explained last time that we were here. So I'm going to sustain the objection.

MR. ALFARO: Thank your Honor.
Q. Agent Alfin, did you write the code that generated the unique identifier?
A. No, I did not.
Q. Did you write the code for the exploit in this case?
A. No, I did not.
Q. In your affidavit, do you generally agree that it's possible for an exploit to make a fundamental change or alteration to a computer system or disable a security firewall?
A. I believe that is a quote -- or a paraphrase from my declaration. Some exploits can do those things, yes.
Q. Did you write the unique -- I'm sorry. Did you write the code for the server component?
A. No.

MR. ALFARO: Judge, if I may have a -- if this
is an okay time, may I have a minute for a brief recess
to consult with Dr. Miller?
THE COURT: You may.
We will be in recess for 15 minutes.
(Recess from 4:25 p.m. to 4:39 p.m.)
THE COURT: Mr. Alfaro, I believe it's your turn. Do you have any more questions?

MR. ALFARO: I do have just a few, your Honor.
Q. Agent Alfin, to your memory, was the NIT ran on Mr. Jean's computer in March of 2015?
A. If that's what the -- that sounds accurate. I don't remember the exact date, but that is during the timeframe of our operation. If that's what the report
you have says, then I believe that's accurate.
Q. Would that be accurate to you, the best of your recollection, that his computer was seized on July 9th, 2015?
A. I don't know the exact date it was seized, but again, it sounds accurate.
Q. Agent Alfin, I believe in your declaration, referring to the exploit, you said that you've ran the exploit and reviewed the computer settings; is that correct?
A. On the computer on which it was run, yes.
Q. What security settings did you test?
A. So, first of all, the computer that I was running was a virtual machine. It was also running a Linux operating system similar to what Mr. Jean was running and so first thing that I tested was running a command on the system to see active networking connections.

And so a common test that an individual
performs when analyzing a computer for signs of malware infection or things of that nature are looking at active network connections. And so if you run a piece of software that you think may be having some unintended side effects, you would look at the active network connecting, software, and then see if there are any other active connections. That was one of the things I
did.
The other settings that I looked for were basic, and the operating system was Linux Mint, which is a variant -- or I believe it's based on Ubuntu Linux, which is what the defendant was running.

And so there are built-in defaults, settings files on the computer. In the directory, the directory structure I don't remember off the top of my head. I'm not going to be able to remember specific filenames, but certain things 1 ike what services are configured to run upon boot-up, I believe those are in a file directory named RC.D, and there are various other RC.D directories as well with various numbers after them. And so you can see in there to see if, you know, programs are booting up that you don't expect.

You can also look and, depending on what firewall you are using on the computer installation, you can see if there are any changes in there that are not changes as a result of software that you had intended to install on the computer or the default configurations for those, for those files.

And so I looked at a handful of those configuration files. They appeared to be either in their default configuration or had configurations in them that were the result of software installed on a
machine. So intended changes.
I did not see, in any files that I analyzed or any of the active network connections, anything unintentional. There was no -- most importantly, with this type of software, one of the things that's been alleged is that maybe it left the computer vulnerable to outside intrusion and so if your computer is vulnerable to outside intrusion frequently, it will be, we say listening on a particular port on the computer.

Ports are tied to IP addresses and they will allow you to connect out of your computer and allow other people to connect into your computer. And so looking at those active ports is really one of the most important things to know whether or not your computer has been left in a state that would make it vulnerable to outside intrusion, and again, I did not notice any -any changes or any unintended services on the computer listening for such connections.
Q. Did you review every single security feature?
A. I did not review every single file on the computer.
Q. Would you agree that it's possible for there to be unintended consequences through human error when preparing and using things like an exploit code?
A. Separate from this investigation, other exploits, yes, things can go wrong and there can be unintended
consequences.
Q. I believe you testified that the unique identifier, when it's generated, it needs to be logged and saved on the computer; is that correct?
A. On the government server, or the user's computer?
Q. Either.
A. Well, we don't save anything on the user's computer.

Nothing, nothing remains behind. So the unique identifier is not saved on the user's computer.
Q. Did you look at the code that stored the unique identifier?
A. Sir, can you clarify the question?
Q. Did you look at the code that stored the unique identifier on the government server?
A. That's the same question. But are you referring to what you previously described as the server component? Q. Well, I guess let me see if I can clarify. Would you agree that the unique identifier needs to be stored on the government computer?
A. Yes, it does need to be stored.
Q. In order for it to be stored, there has to be a process to create a method for storing it. Is that correct?
A. Generally, yes.
Q. Were you part of that process?
A. No, I was not.
Q. Is there a code that's generated to -- that's used to capture the information that's displayed in the PCAP file?
A. I'm sorry. Can you clarify that question, please?
Q. The PCAP file that's generated, it -- again, I think your testimony was that it monitors what is sent and what is received from the NIT. Is that correct?
A. So --
Q. It's a two-way network?
A. So the PCAP data is the actual data that was received by the government. It is not a program. The PCAP data is the raw data that was received from the government as the result of the NIT's execution on Mr. Jean's computer.

MR. ALFARO: That's all I have, your Honor. THE COURT: All right. Does that prompt anything further? MR. DEAN: It does not, your Honor. EXAMINATION

BY THE COURT:

Q. Agent Alfin, how many times did regalbegal access the Playpen website during the period of time in which the FBI was operating that website?
A. I don't know the exact number, your Honor, but I
believe he logged onto the website several times, and that period of time was between February 20th, 2015, and March 4th, 2015.

I believe -- I believe it was around four or five times, but I would have to look at the report to be sure.
Q. All right. Given that there were approximately four or five times when regalbegal accessed Playpen, how many of those occasions was the NIT actually deployed?
A. Just once, your Honor. We configured the NIT generally so that after it successfully deployed against a user, we did not deploy it against that user again.
Q. What about if a user used a -- created new sign-on credentials for a subsequent visit?
A. Then that new account, then it would be possible for them to trigger the NIT again. That did, in fact, happen in a separate investigation, part of the Playpen website.
Q. So the NIT was, with respect to regalbegal's access of Playpen, the NIT was deployed one time. Does that mean that only one unique originating number was generated?
A. Yes. There was only one unique identifier associated with the regalbegal account.
Q. What, to your knowledge -- beyond materiality, is
there any reason why the code, the code version of the algorithm that creates the unique identifying numbers, would be sensitive information? Why is that something that would be sensitive?
A. With respect to the code that generates the unique identifiers, that code is not particularly sensitive. It's not classified.

We generally relied on that part of it being not material. That has been our argument to not provide that information thus far.

If the Court finds that that piece of information is material, I will answer that question and disclose it.
Q. All right. Do I understand your testimony to be that the NIT code that was provided to the defense was in what you would classify as an assembly language, which is some measure above binary, but that is the only language in which it exists?
A. So we gave -- we gave the defendant two separate files. One of them was the binary file, and the separate one was the file containing that assembly language code. And that is -- yes, that is my understanding that is all that exists with respect to source code for the NIT.
Q. All right. Is it fair for the Court to assume that
the government is not trying to make Mr. Miller's work more difficult for him by failing to disclose a version that would be in a more human-readable format?
A. No, there is no -- there is no source code written in any of the friendly formats, C or Java or something of that nature. That particular code, it doesn't exist. We're not withholding it.
Q. Are you familiar with the separate counts of the indictment in this case?
A. I was present when they were read at the beginning of this hearing, your Honor.
Q. Counts One through Four all make reference to on or about March 1st of 2015, that the defendant received visual depictions constituting the exploitation of a minor.

Do you know whether or not Counts One through Four pertain to child -- alleged child pornography that the defendant downloaded from the Playpen website while that website was under the government's control?
A. I believe that is accurate, your Honor. I would have to -- I would have to verify, but I believe those charges result from downloading child pornography from the Playpen website while it was under government control, yes.
Q. The defendant is charged in Count Five with being in
possession of contraband images. Do you know whether or not the contraband images charged in Count Five consist of, among other things, the four images identified in Counts One through Four?
A. I do not know the answer to that, your Honor, but we can certainly get the answer to it for you.

THE COURT: That's all the questions that I have.

Does that prompt anything further, Mr. Alfaro?
MR. ALFARO: No, your Honor.
THE COURT: Mr. Dean?
MR. DEAN: No, your Honor.
THE COURT: All right. Agent Alfin, you may step down.

THE WITNESS: Thank your Honor.
THE COURT: Does the government have any further witnesses?

MR. DEAN: We do not, your Honor.
THE COURT: Any rebuttal, Mr. Alfaro?
MR. ALFARO: No rebuttal, your Honor.
THE COURT: Well, I'd like to entertain argument at this time as to the materiality issue, and since Mr. Alfaro has the burden on that, I'm going to ask him to go first.

MR. ALFARO: Thank your Honor.

CLOSING ARGUMENT BY THE DEFENDANT

MR. ALFARO: Judge, I believe that we've met our burden in this case. The test for materiality in the Eighth Circuit is whether it's helpful in preparing the defense, or helpful to the defense.

It's not -- the burden on us is not are we going to be able to present a defense that's believable; is a jury going to be convinced by our defense; is our defense likely to result in an acquittal.

I think the case law, what little is out there for the Eighth Circuit, is certainly that it's much more broader than that. They often come hand in hand when they are talking about Brady, but the Courts are clear to distinguish Brady materiality from Rule 16 materiality.

So I think that the crux of this case, Judge, is we don't have to take the government's word that the exploit did what it did, that the unique identifiers are, in fact, unique, particularly when we're dealing with this complex technology.

I mean, when we look at the most innocent technology in courts around the country ilke radar gun detectors or BAC alcohol machines, those have to be independently verified and tested and confirmed. So the defendant has a right to a fair trial in this evidence,
and it's helpful because it's going to -- it's going to aid the defense in gathering what may be impeachment evidence, rebuttal evidence, and weighed in witness preparation and testimony.

I think the Court in Michaud said it best. If it sounds like we're not putting a finer point on it, Judge, I think the Court said it best on why that's so difficult for the defense team.

It says that in the government's response to the defense requests in these matters is that the defendant hasn't proved what they do not know. They haven't proved what they do not know, but what they want to know is what they don't know so they can determine what defenses are appropriate.

And the Court went on to determine that the defendant has a right to consider the information to determine whether it should lead to a plea agreement or whether there are any favorable defenses, and I think the defendant has a right to that information, and I think that's exactly the position the government is putting us in.

They are saying you can't prove that this information will lead to this type of evidence. Well, we can't show that without looking at the code, your Honor. So I think that it's put us in a Catch-22.

Additionally the Court in Michaud credited Dr. Miller's testimony in addition to the other declarations that we have submitted to the Court over Agent Alfin's testimony. That's not to say that Agent Alfin isn't being honest.

The Court there just makes it clear the defendant is not required to accept the government's assurances that reviewing the NIT code will yield no helpful information, even if the information would yield inculpatory evidence.

That evidence may be relevant and helpful to the defense that would render a plan defense useless or alter our own trial strategy or engage in plea discussions, Judge. So by that fact, it is helpful to the defense.

In regards to the exploit, the software that generates the unique identifiers and the server component, Agent Alfin has reviewed some of this material, but he didn't write the code, your Honor. He doesn't know all the possibilities that could -- that it could have defects, be flawed or run in a way that it's not intended to, which Dr. Miller said is very common, particularly when we're dealing with complex code.

So I think Agent Alfin's testimony should be reviewed skeptically in the sense that he can't verify
that because he hasn't analyzed the code itself.
I think Dr. Miller sufficiently testified why we need this information. Regarding the unique identifier, we need to review that the algorithm was used to review a unique ID. And just because Agent Alfin says it's unique that we only generated once, on a micro scale that is correct, your Honor. But I believe it's correct to state in the suppression hearing there was a number thrown around that there were at least a thousand users on the website.

So we're not talking about just one unique identifier. We're talking about thousands, and I think the increased number creates the risk that this algorithm could operate randomly in unintended consequences that would inappropriately link unique identifiers to a certain individual, and we'11 know whether that has, in fact, happened or did not happen by analyzing the code.

And I think that same -- that same argument applies to the server component. If that data is stored accurately, then the government has nothing to lose. If it's not -- if it's stored inaccurately, then we can present that argument to the jury that despite this alleged confession, it's helpful for the defense to proffer any reasonable helpful defense that the
government's tools were applied inaccurately or have a reasonable probability of malfunctioning.

And same is true with the exploit, your Honor. If it is possible for someone to use the exploit to take control over someone's computer or render Mr. Jean's computer in a way that it's vulnerable to attack that could be used as a defense to counterattack whatever the confession may be, that is helpful.

We don't need to prove that it's reasonable or -- not reasonable. We don't have to prove that it's going to result in acquittal, but it will be helpful to the defense. We won't know that until we analyze the code, your Honor.

So for all these reasons, we believe that this evidence is material. We believe that Mr. Jean has a right to a fair trial in preparing a defense, and we would request that the government enter an order compelling -- that the Court enter an order for the government to compel the code that we've requested.

THE COURT: All right. I have a few questions for you. I didn't write down verbatim everything you said about the standard that should be applied to materiality, but just as I was listening to it, I think that I agreed with most, if not everything, that you had to say.

Obviously it's the government's burden to prove these charges. The defendant has no burden to prove them. Obviously you don't know what you don't know, and you can't figure out if it's useful until you know; but at some point in gauging what is material from what is merely hypothetical, there has to be some context to gauge that.

If this -- if the theory of the defense is that Mr. Jean has been framed, then inside that context, some of the things that you are saying make the discovery of some of this information more material.

If that's not a theory of the defense in this case, then it takes what is extremely a remote possibility and making it wholly superfluous because it doesn't matter.

What can you tell me - what are you willing to te11 me about the theory of the defense of your case to put the Court in a better position to better understand your materiality argument?

MR. ALFARO: And, Judge, I would respond respectfully that that would be an inappropriate consideration for this because the test isn't what type of defense are you going to present and then the Court will determine whether that's relevant or believable. The test is will this evidence be helpful in preparing a
defense.
THE COURT: That's true.
MR. ALFARO: And so I think it would be inappropriate. I don't think I would be able to disclose the theory of defense at this stage. I think -- I think it's fair to say that we could pursue that Mr. Jean was framed. We could also, in addition to doing that, pursuing that, yeah, he confessed, but he was forced to because he didn't know how to explain how his computer was taken over.

I mean, in addition to that, I don't even know what other theories of defense I could proffer without reviewing the code. Could I get this evidence and show that there's actually a really reasonably high probability that someone framed him and took over his computer or that the exploit manufactured in a way that it mis- -- that it miscategorized the IP address and linked it to Mr. Jean? I don't know the possibilities and which way --

THE COURT: Now, wait a minute. There's been no testimony, that I'm aware of, of a possibility that the exploit has anything to do with the IP address that was returned.

MR. ALFARO: Judge, I could be wrong, but I thought part of the testimony was -- let me look at my
notes here. I may have been -- one second, your Honor. I think I misspoke.

What I was trying to refer to is what we're calling the server component -- the component that generates the unique $I D$ could grab a different username and associate it with a different identification, which would essentially mean this user ID is associated with this IP address that we got back, but it's a miscategory -- mis- -- it's logged incorrectly in being linked to a different defendant, which essentially means that's not his IP address.

I don't know if the exploit or the server component that captured it or received it or stored it, were there errors to create that possible error in 1inkage, if that makes any sense.

THE COURT: A11 right. We11, 1 et's go to some of these specific line items on the exploit. How is it material to your defense? And I agree that this doesn't have to go to your defense. It can merely be, material can be judged by its usefulness in allowing you to cross-examine witnesses or to obtain information that your other witnesses could rely on. But how is it material to know how the government picked the lock on the door, so to speak?

MR. ALFARO: Judge, I'm not sure that we agree
to that analogy because it's material to know where the government exploited the computer to see if there's flaws there or if it made any changes or altered the security settings such that it's vulnerable to third-party attacks.

The government --
THE COURT: And why would that -- how would that information --

MR. ALFARO: That would --
THE COURT: If that happened, how would that affect your defense? What would you argue?

MR. ALFARO: I guess potentially that could explain how the child pornography got on the computer.

Al1 the government is saying, when it got this, is someone logged in as regalbegal, someone logged in as this person and we think this person was given this unique identifier, and this unique identifier was logged --

THE COURT: We're going to get to the unique identifiers in a second. I'm talking about the exploit to the Tor browser.

MR. ALFARO: Yeah. Then, your Honor, the exploit -- well, analysis of the exploit code will allow experts to determine, one, that it did -- exactly what it did was pick a lock and not make any changes to the
computer.
If it did make some sort of change, I can't articulate what that change could be because we don't know. It could have rendered the computer subject to third-party attack that could have resulted in an explanation of why that child pornography is on his computer.

THE COURT: Okay. With regard to the -- you've already discussed the unique organizers. Another thing that I understand that you were seeking was, as your witness testified, that it would be very useful to his review to have the, what I've called the NIT code in a source code language rather than binary or assembly 1 anguage.

The government has been -- has testified under oath that it does not exist in a higher level version than the two versions that you've been provided. Are you asking the Court to compel the government to provide something that it's testified it doesn't have, or does that testimony resolve that particular question?

MR. ALFARO: It does, your Honor. We weren't specifically requesting that part because we had received that. So that does resolve that issue, your Honor.

THE COURT: All right. So we're down to two
things, two categorical pieces of information. One is what I have described as the exploit code and the second being the source code that would be associated with how the unique identifying numbers are generated. Those are the two things that you're after at this point that you don't have.

MR. ALFARO: That's correct, Judge.
THE COURT: Okay. A11 right. I think I got that part.

Mr. Dean?
MR. ALFARO: Judge, if I may just have one second --

THE COURT: You may.
MR. ALFARO: -- to look at the document --
THE COURT: Sure.
MR. ALFARO: -- in regards to your question regarding the exploit.

I would simply direct the Court's attention to Dr. Tsyrklevich's declaration as our Defendant's Exhibit A, page 3 of 5 , paragraph 6 , bullet point number 2 , for a more central explanation from the expert that has more experience than myself.

THE COURT: One more time.
MR. ALFARO: Yes, your Honor. That would be page 3 of 5 , Defendant Exhibit A, paragraph 6, bullet
point 2. I would just direct the Court's attention to that paragraph for any other clarification. That's all

I have, Judge.
THE COURT: How do you pronounce that expert's
name?
MR. ALFARO: I believe it's Tsyrklevich.
THE COURT: Is he a lawyer?
MR. ALFARO: Tsyrklevich. Agent Alfin
corrected me. I'm sorry. Dr. Tsyrklevich. He is not a lawyer, Judge.

THE COURT: Why is he opining on a potential admissibility?

MR. ALFARO: Oh, it's -- Judge, I guess the Court's question is what could possibility -- what could we possibly discover, or why would it be helpful to get access to the exploit code. And in an abundance of caution, I would just direct the Court to his statement on why, in his expert opinion, the exploit is necessary to be evaluated for the defense.

THE COURT: And which bullet point in particular did you say?

MR. ALFARO: Bullet point 2.
THE COURT: "As noted, --
MR. ALFARO: That's correct, your Honor.
THE COURT: -- the exploit used"?

Why is it that the defense has not engaged a forensic expert to examine Mr. Jean's laptop to come at some of these issues from that direction?

MR. ALFARO: Judge, the only response I can say to that is in discussion with the defendant community regarding this case, most individuals who have been consulting with forensic experts seem to agree that because of the significant time span, it's extremely unlikely that any information that could be - could have been present after the exploit and the NIT were deployed has now been gone because of the process that Dr. Miller referred to, having overwritten data over a period of time.

Moreover, experts have informed me that it's entirely possible to write code in such a way that it doesn't leave a trace behind. So the -- given those two explanations, Judge, experts seem more concerned with the fact that, the need to analyze this code to come up -- you know, to evaluate these issues on what the exploit does because it's much more easier to look at a code and say, look at all these paths and say, oh, here it is doing something it's not intended to do versus looking at the computer and seeing what's wrong with the computer.

THE COURT: All right. Anything else?

MR. ALFARO: No. No, your Honor. Thank you very much.

THE COURT: All right. Thank you, Mr. Alfaro. Mr. Dean?

MR. DEAN: Thank your Honor.
CLOSING ARGUMENT BY THE GOVERNMENT
MR. DEAN: First of all, your Honor, I
wouldn't -- and I think courts around the country, a couple of courts at least, have not put a whole lot of stock in these declarations from witnesses who were present in the courtroom; subject to cross-examination, I would ask this Court to do the same.

I would also ask the Court to not put a whole lot of stock in Dr. Miller's declaration. I think he provided good, sound testimony today, but his declaration is in conflict with some of that testimony. He said in his declaration that was issued: Exploits fundamentally alter a computer. And then when I crossed him on it today, he goes, well, not necessarily; they don't always do that.

So you have a very, you know, straightforward statement and then you have a hedging of that.

At the end of the day, this defense request is based entirely, 100 percent, on speculation. As Special Agent Alfin testified, there have been over 200 cases
prosecuted nationwide that are completely under fire from the defense bar regarding the Playpen website. They are doing their best to find a hole and find an issue in these cases. And to date, not one person has shown that any of these doomsday scenarios or possibilities or what-ifs have occurred anywhere, across the country. Because the whole thing would fall apart, and it hasn't happened.

There's no evidence that anything that actually occurred -- that they are saying could have occurred in this case has occurred other than the NIT behaved exactly 1 ike it was supposed to do, as it did in this case.

Now, the Eighth Circuit is not -- there's not a whole lot of Eighth Circuit case law on the materiality standard, but what's out there says the defense doesn't get to decide it's material. And it's not as Mr. Alfaro said: The standard is a little bit higher than speculation. That's not it. It has to aid the defense, and this in no way aids the defense.

THE COURT: But you concede that even if it turns out to be inculpatory evidence that it can still assist the defense in the sense that they don't plow down a path that they shouldn't have taken but don't discover that until it's too late?

MR. DEAN: Correct, but they still haven't been able to point to anything other than what-ifs. Dr. Miller's testimony, again, I appreciated his testimony. I thought it was sincere, but it was "could have, might happen, maybe this could happen, you might find this."

And then he, himself, said, "You know what? It's even possible that the exploit could have caused unintended consequences on the computer." We heard that several times today.

Okay. What did they do with that? They didn't look at a computer. The computer's been sitting in Little Rock this whole time. They don't look at it. They don't want to look at it. Nobody wants to look at the computers across the country.
"It's been a long time. Maybe that information's not there anymore." You don't know if you don't try.

So for whatever reason they are trying to get this information, I don't think it's for mounting a defense because there's something out there that they could possibly use to mount a defense and they are not doing it. They are ignoring it.

And then the chance of an issue, I think when you were inquiring, your Honor, he said, you know, the
chance of hacking or something like that. It's above very unlikely, but it's not likely. And then when you confronted him with, well, what about the fact that Mr. Jean in this case actually confessed to being regalbegal, he says, well, then it's much less likely.

So then I guess at that point we're much less likely, a little bit above very unlikely. It's fishing. It's speculation. That says it all right there.

What's helpful to the defense in this case? What's not helpful to them is the confession by the defendant, and they just kind of push that aside. At the end of the day, you have a NIT that was designed to identify somebody who was downloading child pornography to a certain IP address.

We get a subpoena for that IP address from the account regalbegal. We then knock on the door of the person that came back identified as regalbegal, and a man is there that says, "Oh, yeah, how are you doing; I'm regalbegal."

The NIT did exactly what it was supposed to do, and everything else is just fishing. It's not going to aid them in any way. They can't come up with any kind of a goofy framing defense or anything else because Mr. Jean said "I'm who you're looking for." NIT set out to look for somebody, we found them, and Mr. Jean
confirmed, "Yeah, that's me."
I would also, just for the record, like to incorporate all the arguments I made in that suppression hearing for purposes of appeal. Thank your Honor.

THE COURT: Do Counts One through Four, the receipt counts in the superseding indictment, are those receipts that the government intends to prove took place by regalbegal from Playpen while it was being monitored by the FBI?

MR. DEAN: I believe every single one of those counts is alleged to have occurred on or about March the 1st, and based on Special Agent Alfin's testimony, then that would coincide with when it was being monitored by the FBI. It's within that time period.

THE COURT: All right.
MR. DEAN: So yes.
THE COURT: Now, the possession count is alleged more broadly. Does the government anticipate proving that the images that were documented -- or that the government documents in the four receipt counts, that those images were found on the computer several months later when the arrest was made?

MR. DEAN: Not necessarily. The possession count that I believe is an "on or about" date in July when the search warrant was executed just reflect the
pornography that was found on the computer, on the hard drive, on -- I want to say it's July the 5th, but I'm not sure about that date.

THE COURT: It is, and I get that. My question is of the images that were found when the computer was -- when the search warrant was executed, do the four images that are associated with Counts One through Four, were those images part of what they found on the computer?

MR. DEAN: Yes, your Honor.
THE COURT: All right. Thank you, Mr. Dean.
MR. DEAN: Thank your Honor.
THE COURT: Anything else you'd like to add,
Mr. Alfaro?
MR. ALFARO: No, your Honor.
THE COURT: All right. The Court is going to take the motion under advisement, and we will get an opinion out as soon as possible. I don't know when that will be, but I would like to think it will be much more quickly than we were able to get out an opinion on the suppression issue because I would like to get this matter pushed forward one way or the other.

Based on the evidence before the Court in the theory that Mr. Alfaro has articulated as it relates to this unique identifier and the code that would -- that

Dr. Miller has testified that if he had that, he could -- the things he could do with that, I actually have a question for Mr. Alfaro.

If the Court ordered the government to produce that code under a protective order, would it be Dr. Miller? Would he be the expert in your stable that would do that work, or do you anticipate someone else? MR. ALFARO: It would be Dr. Miller, your Honor.

THE COURT: And do you know of any reason why you would have a need to share that code with anyone else on your defense team or expert team beyond Dr. Miller?

MR. ALFARO: Judge, in abundance of caution, I don't want to limit myself. So if the Court were to entertain that order, we would respectfully request that it would be Dr. Miller and an individual with the defense team.

I don't anticipate discussing it with anyone else, but I don't want to foreclose the possibility that Dr. Miller would want to consult with another expert.

THE COURT: All right. Well, the -- when dealing with protective orders, the less people -- the fewer people that are in the loop I think tends to have somewhat of a correlation between reducing the
likelihood that there are any violations, intended or otherwise, or unintended, in the protective order.

So to the extent that the Court ultimately orders that, it would likely ask that you limit that, you know, to one expert. And you're telling me that that one on your team of the -- I don't know that they're on your team. You had a different expert at the suppression hearing, and you've attached affidavits from at least a couple of other experts. But you're telling me that Dr. Miller would be the most logical person to get that information?

MR. ALFARO: That's correct, your Honor. If the Court did order that, I would seek permission for just Dr. Miller to analyze that, with results.

THE COURT: All right. Well, Mr. Dean, would you be willing to do this. Throughout the course of this hearing today, I think we have reduced the discovery dispute from three or four things down to two things: The exploit code and the code that is used to generate the unique identifying number.

Given Agent Alfin's testimony about this not being as sensitive as the exploit code, would you confer with your clients and the government and with Mr. Alfaro and try to come to some sort of agreement about that, if possible, with the idea that it would be strictly

1imited to Dr. Miller's and counsel's eyes only and not to be disseminated beyond that; and after having conferred, let the Court know whether you would be agreeable to that or not?

If not, then the Court will rule on both issues, but if you can find some common ground, then that would eliminate the need for the Court to address that issue.

MR. DEAN: Your Honor, I'm prepared to do that right now.

THE COURT: Very well. Then I would ask the government to refine its protective order so that the code that would be responsible for generating this unique identifying -- unique identifier number could be provided to the defense and that it be at an attorneys' eyes only leve1, plus Dr. Miller.

And Dr. Miller, are you still with us?
MR. MILLER: I am.
THE COURT: Have you been able to hear what I just ordered?

MR. MILLER: Yes, I did.
THE COURT: The attorneys will put that order into writing and will effectuate it through a more precise protective order, but I want to make sure you understand that the Court's intent is to give you the
information that you have testified could potentially be useful to you in formulating your position on this unique identifier. And you are not to share that information with anyone else, less and except you come back to the Court and get permission. Do you understand that?

MR. MILLER: I do understand.
THE COURT: All right. Thank you, sir.
Al1 right. So if y'all wil1 get together and work on a protective order that contains that language and restrictions, the Court will sign off on it and then we will focus the opinion on whether or not there is, first of all, any materiality that would justify forcing the government to reveal the exploit code. And if the Court answers that question that it is material, then we will set some sort of framework and ask for -- well, we'11 sort out the logistics with you of whether we need to have a hearing or whether further confidential briefing, in-camera type briefing or whatever would be sufficient on that. We'11 give you more information about that when the order comes out.

Anything further today, Mr. Alfaro?
MR. ALFARO: No, your Honor. Thank you.
THE COURT: Mr. Dean?
MR. DEAN: No, your Honor.

THE COURT: A11 right. We're adjourned. (Proceedings adjourned at 5:30 p.m.)

CERTIFICATE OF OFFICIAL REPORTER

I, Dana Hayden, Federal Official Realtime Court
Reporter, in and for the United States District Court for the Western District of Arkansas, do hereby certify that pursuant to Section 753 , Title 28 , United States Code that the foregoing is a true and correct transcript of the stenographically reported proceedings held in the above-entitled matter and that the transcript page format is in conformance with the regulations of the Judicial Conference of the United States.

Dated this 26th day of October 2016.

Digitally signed by Dana Hayden, CCR, RMR, CRR
DN: cn=Dana Hayden, CCR, RMR, CRR, o=United States Western District Court of Arkansas, Fayetteville Division, ou=Official Court Reporter for the Honorable Timothy L. Brooks,
email=Dana_Hayden@arwd.uscourts.gov, $c=$ US
Date: 2016.10.26 09:22:17-05'00'

Dana Hayden, CCR, RMR, CRR Federal Official Court Reporter

0	4	115:2, 118:20,	addition [8] - 15:9,	
$\begin{aligned} & 0.27[3]-7: 18,53: 22, \\ & 54: 2 \end{aligned}$	$\begin{aligned} & \mathbf{4}_{[1]}-\mathbf{4 4 : 2 4} \\ & \mathbf{4 0}_{[1]}-3: 23 \\ & \mathbf{4 1 4}{ }_{[1]}-1: 13 \\ & \mathbf{4 2}{ }_{[1]}-2: 9 \\ & \mathbf{4 4 2 - 2 3 0 6}{ }_{[1]}-1: 19 \\ & \mathbf{4 7 9}{ }_{[2]}-1: 14,1: 19 \\ & \mathbf{4 : 2 5}{ }_{[1]}-90: 17 \\ & \mathbf{4 : 3 9}{ }_{[1]}-90: 17 \\ & \mathbf{4 t h} \\ & {[1]-96: 3} \end{aligned}$	```above-entitled [1] - 124:9 absorb [1] - 17:22 abundance [2] - 111:16, 119:14```	$\begin{aligned} & 73: 3,102: 2,106: 7, \\ & \text { 106:11 } \\ & \text { additional }[4]-27: 1, \\ & 35: 12,61: 21,73: 17 \end{aligned}$	$\begin{gathered} 79: 12,79: 15 \\ \text { ago }[1]-42: 13 \\ \text { agree }[10]-47: 25, \\ 48: 1,51: 25,83: 6 \end{gathered}$
1				$\begin{aligned} & \text { 48:1, 51:25, 83:6, } \\ & 90: 3,93: 21,94: 18, \end{aligned}$
$\begin{aligned} & \hline 1[1]-3: 3 \\ & 100[3]-2: 17,50: 4, \\ & 113: 24 \\ & 100,000[1]-88: 24 \\ & 101[1]-43: 14 \end{aligned}$		$\begin{aligned} & \text { accept }[1]-102: 7 \\ & \text { access }[16]-13: 5, \\ & 24: 16,28: 22,32: 1, \\ & 39: 12,39: 15,40: 13, \\ & 40: 15,40: 17,40: 19, \end{aligned}$	$\begin{aligned} & \text { 102:1 } \\ & \text { address [21] - 7:9, 8:4, } \\ & 8: 9,9: 14,15: 18, \\ & 26: 14,31: 17,48: 6, \\ & 49: 14,50: 8,71: 5, \end{aligned}$	```107:18, 107:25, 112:7 agreeable [1] - 121:4 agreed [1] - 104:24 agreement [2] -```
$\begin{aligned} & 11[3]-1: 9,2: 5,46: 5 \\ & 113[1]-2: 18 \end{aligned}$	5	$\begin{aligned} & 41: 19,41: 24,54: 22, \\ & 95: 22,96: 19,111: 16 \end{aligned}$	$\begin{aligned} & \text { 72:24, 76:18, 76:19, } \\ & \text { 106:17, 106:22, } \end{aligned}$	$\begin{gathered} \text { 101:17, 120:24 } \\ \text { ahead }[4]-25: 16, \end{gathered}$
$\begin{aligned} & 118{ }_{[1]}-2: 19 \\ & 123_{[1]}-2: 20 \end{aligned}$		$\begin{aligned} & \text { accessed }[3]-10: 11, \\ & 89: 14,96: 8 \end{aligned}$	$\begin{aligned} & \text { 107:8, 107:11, } \\ & \text { 116:14, 116:15, } \end{aligned}$	$\begin{array}{r} 27: 18,37: 11,54: 19 \\ \text { aid }[4]-78: 22,101: 2, \end{array}$
124 [1] - 2:21	$52[1]-2: 10$	accessing [3] - 3:15,	121:7	114:19, 116:2
13[1]-86:13	5:15-CR-50087 [1] -	$55: 12,58: 19$	$\begin{array}{r} \text { addresses [4]-25:3, } \\ 39: 19,39: 25,93: 10 \end{array}$	aids [1] - 114:20 alcohol $[1]-100 \cdot 23$
14[1]-86:13	3:3	accidentally $[1]$ -	$39: 19,39: 25,93: 10$ Adjourned [1] - 2:20	alcohol [1] - 100:23
$\begin{aligned} & \text { 16 [2] }-11: 4,100: 14 \\ & \text { 1st }[2]-98: 13,117: 12 \end{aligned}$	$\text { 5th }[1]-118: 2$	accompanying ${ }_{[1]}$ - 9:14	adjourned [2] - 123:1, 123:2	$\begin{aligned} & 2: 10,2: 11,2: 14,3: 4 \\ & 11: 20,51: 5,53: 8 \end{aligned}$
	6	according $[3]-6: 22$, 7:16, 7:19 account [4] - 85:24,	administer [1] - 19:18	67:1, 69:13, 69:20,
2	$\begin{aligned} & 6_{[2]-110: 20,110: 25} \\ & 67[1]-2: 11 \end{aligned}$		$\begin{aligned} & 8: 7,8: 11 \\ & \text { admissibility }[1] \text { - } \end{aligned}$	99:9, 99:19, 99:23,
$\begin{aligned} & 2[3]-110: 20,111: 1, \\ & 111: 22 \end{aligned}$		$\begin{aligned} & \text { account }[4]-85: 24, \\ & 96: 15,96: 24,116: 16 \\ & \text { accurate }[12]-41: 2, \end{aligned}$	$\begin{aligned} & \text { admissibility [1] - } \\ & \text { 111:12 } \end{aligned}$	$\begin{aligned} & \text { 118:14, 118:24, } \\ & \text { 119:3, 120:23, } \\ & 122: 22 \end{aligned}$
$\begin{aligned} & 20[1]-2: 9 \\ & 200[6]-88: 5, \end{aligned}$	7	$\begin{gathered} \text { accurate }[12]-41: 2, \\ 61: 14,62: 13,71: 20, \end{gathered}$	111:12 admission [1] - 8:23	
$\begin{aligned} & 88: 23,88: 24,89: 12, \\ & 113: 25 \end{aligned}$	$\begin{aligned} & 7_{[1]}-71: 14 \\ & 70_{[1]}-2: 14 \end{aligned}$	$\begin{aligned} & 75: 13,79: 6,88: 8, \\ & 90: 23,91: 1,91: 2, \\ & 91: 6,98: 20 \end{aligned}$	$\begin{aligned} & \text { advance }[4]-55: 8 \text {, } \\ & 56: 23,57: 9,57: 22 \end{aligned}$	ALFARO [61] - 11:24, 12:15, 12:23, 14:15,
2003 [2]-20:25, 21:3	72701 [1]-1:24	accurately [6] - 49:11,		15:13, 16:8, 17:2,
2009 [1] - 70:18	72703 [1]-1:19	$\begin{aligned} & 74: 18,75: 16,77: 22, \\ & 78: 15,103: 21 \end{aligned}$	advanced [1] - 55:15	$\begin{aligned} & 18: 4,18: 9,18: 12, \\ & 19: 3,19: 7,19: 15, \end{aligned}$
2012[1]-21:2	72901 [1]-1:14		advantage $[5]-34: 2$,	
2013 [1] - 67:10 2015 [6]-45:8,	753 [1]-124:6	acknowledges [1] - 73:10	$\begin{aligned} & 35: 3,46: 19,46: 22 \text {, } \\ & 46: 24 \end{aligned}$	$\begin{aligned} & \text { 19:3, 19:7, 19:15, } \\ & 20: 4,42: 2,51: 6 \end{aligned}$
$\begin{aligned} & 91: 4,96: 2,96: 3, \\ & 98: 13 \end{aligned}$	8	acquired [1] - 48:8 acquittal [2] - 100:9,	advisement [2]-2:19, 118:17	69:16, 69:21, 86:19,
$\begin{aligned} & 2016[3]-1: 9,2: 5, \\ & 124: 12 \end{aligned}$	$\begin{aligned} & 8,000{ }_{[1]}-71: 14 \\ & 86_{[1]}-2: 14 \end{aligned}$	```actions [1] - 46:10 activating [5] - 6:16, 6:20, 13:3, 52:21, 62:10```	affect ${ }_{[1]}-108: 11$ affidavit $[7]-5: 11$,	$\begin{aligned} & 89: 22,90: 12,90: 20, \\ & 95: 16,99: 10,99: 20, \end{aligned}$
20th [1] - 96:2 22nd [1]-3:11	9		$\begin{gathered} \text { affidavit }[7]-5: 11, \\ 5: 12,17: 22,36: 2, \\ 62: 7,79: 2,90: 3 \end{gathered}$	95:16, 99:10, 99:20, 99:25, 100:2, 105:20, 106:3,
$\begin{aligned} & \mathbf{2 4 9 - 9 0 4 0}[1]-1: 14 \\ & \mathbf{2 5 0}{ }_{[1]}-88: 23 \\ & \mathbf{2 6 t h}[1]-124: 12 \end{aligned}$	9th [1] - 91:3	active [8] - 55:14, 83:12, 91:17, 91:20,	$\begin{aligned} & \text { affidavits }[5]-5: 9, \\ & 5: 10,5: 15,62: 4, \\ & 120: 8 \end{aligned}$	$\begin{aligned} & \text { 106:24, 107:25, } \\ & \text { 108:9, 108:12, } \end{aligned}$
$\begin{aligned} & \mathbf{2 7}[2]-73: 21,76: 25 \\ & \mathbf{2 8}[2]-5: 3,124: 6 \end{aligned}$	A	$\begin{aligned} & 83: 12,91: 17,91: 20, \\ & 91: 23,91: 25,93: 3, \\ & 93: 13 \end{aligned}$	afternoon [6] - 3:6,	$\begin{aligned} & \text { 110:7, 110:11, } \\ & \text { 110:14, 110:16, } \end{aligned}$
$\begin{aligned} & \mathbf{2 8 0}[1]-1: 18 \\ & \mathbf{2 : 1 4 [1] - 1 : 9} \end{aligned}$	$\begin{aligned} & \text { A-I-f-i-n }[1]-70: 11 \\ & \text { abilities }[1]-13: 18 \\ & \text { ability }[2]-59: 17, \\ & 87: 17 \\ & \text { able }[27]-10: 9,15: 15, \\ & 15: 17,15: 18,17: 21, \\ & \text { 17:22, 26:10, } 34: 12, \\ & 34: 13,41: 20,44: 4, \\ & 62: 9,64: 25,65: 13, \\ & 68: 21,68: 22,69: 2, \\ & 69: 3,83: 5,84: 13, \\ & 92: 9,100: 7,106: 4, \end{aligned}$	$\begin{aligned} & \text { activity }[5]-48: 13, \\ & 76: 6,76: 11,76: 22, \\ & 84: 11 \end{aligned}$	$\begin{gathered} \text { agent }[3]-70: 11, \\ 70: 18,70: 19 \end{gathered}$ Agent [26] - 4:15, 5:12, 25:22, 36:1,	110:24, 111:6, 111:8, 111:13, 111:22, 111:24
3				$\begin{aligned} & \text { 111:22, 111:24, } \\ & \text { 112:4, 113:1, } \end{aligned}$
$\begin{aligned} & 3[3]-2: 6,110: 20, \\ & 110: 25 \\ & 30[1]-5: 4 \\ & 35_{[1]}-1: 24 \\ & 3739[1]-1: 18 \end{aligned}$		$\begin{aligned} & \text { actual [15]-14:3, } \\ & \text { 14:7, 30:24, 31:7, } \\ & 43: 11,58: 23,64: 12, \\ & 64: 18,66: 12,74: 10, \\ & 74: 14,74: 15,78: 12, \\ & \text { 80:1, 95:11, } \\ & \text { add }[3]-35: 11,38: 20, \\ & 118: 13 \end{aligned}$	$\begin{aligned} & \text { 53:17, 62:4, 69:24, } \\ & 70: 1,71: 25,80: 25, \\ & \text { 86:22, 88:19, 89:23, } \\ & 90: 21,91: 7,95: 22, \\ & 99: 13,102: 4, \\ & \text { 102:18, 102:24, } \\ & \text { 103:5, 111:8, } \\ & \text { 113:25, 117:12, } \end{aligned}$	```118:15, 119:8, 119:14, 120:12, 122:23 Alfaro's [1] - 5:2 ALFIN[3] - 2:13, 4:18, 70:3 Alfin [23] - 4:15, 4:19, 5:13, 25:22, 36:1,```

53:17, 69:25, 70:1,
70:10, 71:25, 80:25,
86:22, 88:20, 89:23,
90:21, 91:7, 95:22,
99:13, 102:5,
102:18, 103:6,
111:8, 113:25
Alfin's [5] - 62:4,
102:4, 102:24,
117:12, 120:21
algorithm [7]-14:21,
16:15, 33:18, 61:18,
97:2, 103:4, 103:14
allegation [1] - 3:17
alleged [10] - 9:12,
50:13, 79:24, 80:19, 80:23, 93:6, 98:17, 103:24, 117:11, 117:18
allegedly [2] - 6:17, 9:22
alleging ${ }_{[1]}-76: 20$
ALLEN ${ }_{[1]}$ - 1:6
Allen [2]-3:2, 50:14
allow [7]-13:7, 21:19, 35:22, 75:17, 93:11, 108:23
allowed [2]-10:13, 79:6
allowing ${ }_{[1]}$ - 107:20
almost [2]-31:12, 81:21
alter [3]-34:21,
102:13, 113:18
alteration [1] - 90:5
altered $[3]-43: 22$, 45:2, 108:3
altering [1] - 45:25
AMERICA ${ }_{[1]}-1: 3$
amount [2]-56:19, 84:23
analogized [1] - 10:14
analogy [2]-36:21, 108:1
analysis [17]-20:19,
24:4, 24:9, 25:25,
43:17, 52:18, 61:5,
61:11, 62:7, 68:23,
74:9, 82:1, 82:11,
82:25, 83:6, 86:23,
108:23
analyze [10]-22:13, 34:1, 34:12, 38:25, 65:13, 68:18, 85:6, 104:12, 112:18, 120:14
analyzed [11]-27:4, 30:21, 38:7, 52:4, 52:8, 66:9, 72:18, 74:3, 88:22, 93:2,

103:1
analyzing [11] - 37:4,
38:6, 39:2, 39:3, 39:10, 41:8, 41:17, 43:18, 51:11, 91:19, 103:18
anomalies [1]-86:7
answer [3] - 97:12, 99:5, 99:6
answering [1] - 87:8
answers [1]-122:15
Anthony [3]-3:2,
50:14, 72:7
ANTHONY ${ }_{[1]}-1: 6$
anticipate [6]-4:16,
5:11, 38:16, 117:18, 119:7, 119:19
anticipates [2]-4:1, 34:24
anticipating ${ }_{[1]}$ -
38:18
apart [3]-13:4, 14:5, 114:7
apologize [1] - 89:8
appeal ${ }_{[1]}-117: 4$
appear [2] - 48:7, 79:22
appeared ${ }_{[1]}-92: 23$
appearing $[2]-4: 5$, 20:16
applied [2]-104:1,
104:22
applies [3]-11:18, 80:2, 103:20
appreciate [3]-43:20, 89:6, 89:10
appreciated [1] 115:3
approach [1] - 70:2
appropriate [2]-28:4,

101:14

AR [2]-1:14, 1:19
architected [1] - 40:14
area [2]-43:16, 44:1
argue [1] - 108:11
ARGUMENT [2] -
100:1, 113:6
Argument [2]-2:17, 2:18
argument $[9]-80: 12$, 89:4, 89:6, 89:11, 97:9, 99:22, 103:19, 103:23, 105:19
arguments [1] - 117:3 arising [1] - 25:7
ARKANSAS [2] - 1:1, 1:10
Arkansas [4]-1:24, 42:18, 42:20, 124:5 arraignment [1]-9:3
arrest [1] - 117:22 arrested [2]-88:6, 89:12
articulate [3]-17:21, 41:24, 109:3 articulated [1] -
118:24
aside [1] - 116:11 aspect [3]-15:21, 18:13, 69:1 assembly [13] - 22:5, 65:10, 65:24, 68:22, 77:18, 78:3, 78:10,
78:11, 78:14, 97:16, 97:21, 109:13
asserting ${ }_{[1]}-11: 12$
assertion [1]-11:17
assets ${ }_{[1]}$ - 56:11
assigned ${ }_{[1]}-70: 12$
assist ${ }_{[1]}$ - 114:23
assistant [3]-20:9,
21:9, 42:9
associate [3]-33:21, 80:15, 107:6
associated $[9]-8: 8$,
41:4, 43:19, 59:8,
76:20, 96:24, 107:7,
110:3, 118:7
associating [2] -
14:21, 77:1
assume [3]-4:5,
50:16, 97:25
assuming [1] - 74:19
assumption ${ }_{[1]}$ - 78:6
assurances [1] -
102:8
attached $[3]-5: 9,8: 4$, 120:8
attachments [1] - $5: 5$ attack [4]-35:14,
104:6, 109:5
attacked ${ }_{[1]}-55: 5$
attacker [1] - 35:17
attacking $[1]-56: 14$
attacks [1]-108:5
attention [2]-110:18,
111:1
attorney [1] - 42:9
Attorney's [1] - 1:13
attorneys [1] - 121:22
attorneys' $[1]$ - 121:15
audience [1]-58:14
authentication [1] -
48:13
author [2]-46:6, 72:2
authorized [3] - 72:24, 73:2, 73:13
available [3]-14:11,
51:23, 59:23
avatar [3]-6:21, 60:7,

binary $[21]-22: 24$,
30:24, 31:12, 63:6,
63:17, 64:2, 64:4,
64:7, 64:19, 65:19,
66:1, 68:20, 72:18,
77:17, 78:12, 97:17,
bit [8] - 5:17, 5:24,
23:8, 36:20, 58:16,
5.21, 114:18, 116:7
black [1] - 22:10
blasting [1] - 83:14
blue [4]-56:11, 56:16,
59:6, 83:5
blueprint $[1]-23: 15$
Blvd [1] - 1:18
boot-up [1] - 92:11
booting [1] - 92:14
rady [2] - 100:13
brain [1] - 45:18
break [3] - 12:22,
breezed [1] - 42:15
brief $[1]$ - 90:13
briefing [2]-122:19
biefll $20: 22$
bring $[1]-64: 8$
broad [1] - 18:1
broader [1] - 100:12
broadly [1] - 117:18
BROOKS [1] - 1:9
browser [11] - 7:24
10:10, 10:15, 13:6, 34:7, 34:24, 53:20 108:21
browsers [1] - 55:4
building [4]-23:13
built [3]-23:14, 41:6, 92:6
in [1] - 92:6
bullet [4]-110:20,
110:25, 111:20,
111.22
,
11:18, 99:23, 100:3,
100:6, 105:1, 105:2
business [2]-7:17,
56:8
[10]-20:4, 42:7
51:9, 52:13, 67:5,

$\begin{aligned} & 70: 8,86: 21,95: 21, \\ & 100: 1,113: 6 \end{aligned}$	$\begin{aligned} & \text { 112:6, 114:11, } \\ & \text { 114:13, 114:15, } \end{aligned}$	$\begin{gathered} \text { charges [3] - 3:11, } \\ 98: 22,105: 2 \end{gathered}$	$\begin{aligned} & \text { 22:23, 22:24, 22:25, } \\ & 23: 1,23: 5,23: 7, \end{aligned}$	coincide [1] - 117:13 colleagues [1] - 81:16
C	Case [1] - 70:14	$38: 13,57: 10$	$24: 24,25: 4,25: 5$	73:14
$\begin{aligned} & \text { cache }{ }_{[1]}-28: 7 \\ & \text { camera }[1]-122: 19 \\ & \text { capabilities }[1]-85: 5 \\ & \text { capability }[1]-83: 24 \\ & \text { capable }[1]-63: 14 \\ & \text { capacity }[1]-88: 21 \\ & \text { capture }[7]-31: 16, \\ & 55: 17,59: 15,85: 5, \\ & 86: 23,87: 23,95: 3 \\ & \text { captured }[6]-49: 5, \\ & 59: 16,83: 10,83: 18, \\ & 84: 17,107: 13 \\ & \text { capturing }[2]-59: 10, \\ & 89: 2 \\ & \text { car }[1]-36: 24 \\ & \text { care }[1]-58: 13 \\ & \text { CASE }[1]-1: 5 \\ & \text { case }[119]-3: 23,4: 13, \\ & 5: 12,5: 13,6: 13, \\ & 6: 20,9: 12,10: 6, \\ & 18: 19,20: 20,22: 3, \\ & 22: 14,24: 8,24: 10, \\ & 24: 12,24: 13,24: 17, \\ & 24: 25,25: 5,25: 8, \\ & 25: 12,26: 1,26: 4, \\ & 26: 5,26: 17,30: 17, \\ & 33: 14,34: 15,38: 21, \\ & 40: 16,40: 22,43: 1, \\ & 43: 2,43: 8,43: 12, \\ & 44: 10,44: 12,44: 22, \\ & 45: 7,45: 8,45: 13, \\ & 45: 15,45: 17,46: 1, \\ & 46: 5,46: 16,46: 19, \\ & 50: 6,50: 12,52: 3, \\ & 52: 5,52: 22,53: 18, \\ & 60: 15,60: 17,60: 19, \\ & 61: 3,63: 2,67: 12, \\ & 67: 14,68: 3,69: 18, \\ & 70: 19,70: 20,72: 8, \\ & 74: 5,74: 20,75: 9, \\ & 75: 15,75: 24,76: 15, \\ & 78: 9,78: 10,79: 7, \\ & 80: 1,80: 4,80: 9, \\ & 80: 15,80: 17,80: 22, \\ & 81: 1,81: 3,81: 9, \\ & 81: 17,81: 18,81: 22, \\ & 81: 24,82: 8,82: 9, \\ & 82: 17,82: 19,82: 24, \\ & 82: 25,83: 11,84: 6, \\ & 84: 22,85: 13,85: 16, \\ & 85: 17,86: 3,86: 12, \\ & 87: 18,87: 19,88: 7, \\ & 90: 1,98: 9,100: 3, \\ & 100: 10,100: 16, \\ & 105: 13,105: 17, \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 25:7, 59:8, 62:4, } \\ & \text { 62:7, } 66: 14,66: 19, \\ & \text { 66:23, } 71: 24,85: 18, \\ & \text { 87:21, 113:25, 114:4 } \\ & \text { Castle }[1]-25: 19 \\ & \text { Catch-22 [1]-101:25 } \\ & \text { catching }[1]-55: 8 \\ & \text { categorical }[1]-110: 1 \\ & \text { categorically }[1]- \\ & \text { 11:22 } \\ & \text { caught }[2]-67: 11, \\ & 68: 4 \\ & \text { caused }[3]-7: 3,9: 12, \\ & 115: 8 \\ & \text { caution }[2]-111: 17, \\ & 119: 14 \\ & \text { CCR }[2]-1: 23,124: 17 \\ & \text { central }[1]-110: 21 \\ & \text { certain }[5]-3: 19, \\ & 78: 2,92: 10,103: 16, \\ & 116: 14 \\ & \text { certainly }[6]-85: 23, \\ & 86: 25,89: 5,89: 6, \\ & 99: 6,100: 11 \\ & \text { CERTIFICATE } \\ & 124: 1 \\ & \text { Certificate }[1]-2: 21 \\ & \text { certificate }[1]-34: 7 \\ & \text { certificates }[2]- \\ & 23: 22,35: 12 \\ & \text { certify }[1]-124: 5 \\ & \text { chain }[2]-25: 15,41: 9 \\ & \text { chance }[2]-115: 24, \\ & 116: 1 \\ & \text { change }[5]-45: 18, \\ & 45: 20,90: 4,109: 2, \\ & 109: 3 \\ & \text { changeable }[1]- \\ & 51: 21 \\ & \text { changed }[6]-43: 22, \\ & 45: 19,51: 20,53: 13, \\ & 57: 11,59: 1 \\ & \text { changes }[13]-36: 4, \\ & 45: 14,45: 16,51: 18, \\ & 52: 4,62: 17,86: 23, \\ & 92: 18,92: 19,93: 1, \\ & 93: 17,108: 3,108: 25 \\ & \text { characteristics }[1]- \\ & 13: 18 \\ & \text { characterization }[1]- \\ & 42: 1 \\ & \text { characterize }[1]- \\ & 61: 17 \\ & \text { charged }[2]-98: 25, \\ & 99: 2 \end{aligned}$	$\begin{aligned} & \text { 6:23, 8:21, 9:11, } \\ & \text { 60:8, 73:16, 84:22, } \\ & \text { 86:10, 87:12, 98:17, } \\ & \text { 98:22, 108:13, } \\ & \text { 109:6, 116:13 } \\ & \text { children }[1]-21: 12 \\ & \text { Children }[1]-70: 13 \\ & \text { Circuit }[4]-100: 4, \\ & \text { 100:11, 114:14, } \\ & \text { 114:15 } \\ & \text { cites }[1]-11: 13 \\ & \text { city }[1]-36: 22 \\ & \text { clarification }[1]- \\ & 111: 2 \\ & \text { clarify }[14]-11: 24, \\ & 12: 1,12: 3,12: 7, \\ & 15: 23,16: 21,18: 4, \\ & 36: 20,46: 14,68: 10, \\ & 76: 4,94: 12,94: 17, \\ & 95: 5 \\ & \text { classified }[1]-97: 7 \\ & \text { classify }[1]-97: 16 \\ & \text { clean }[1]-51: 17 \\ & \text { clear }[6]-7: 13,13: 20, \\ & 66: 6,77: 15,100: 13, \\ & \text { 102:6 } \\ & \text { clearly }[4]-17: 22, \\ & 71: 8,75: 2,75: 11 \\ & \text { clerk }[1]-19: 17 \\ & \text { CLERK }[2]-19: 22, \\ & 62: 22 \\ & \text { client's }[1]-12: 17 \\ & \text { clients }[1]-120: 23 \\ & \text { closed }[2]-73: 11, \\ & 73: 20 \\ & \text { CLosing }[2]-100: 1, \\ & 113: 6 \\ & \text { Closing }[2]-2: 17, \\ & 2: 18 \\ & \text { Code }[1]-124: 7 \\ & \text { code }[195]-6: 14,6: 24, \\ & 7: 6,9: 9,10: 13, \\ & 10: 16,10: 23,10: 25, \\ & 11: 1,11: 3,11: 10, \\ & 11: 15,11: 23,12: 3, \\ & 12: 4,12: 6,12: 20, \\ & 12: 25,13: 2,13: 5, \\ & 13: 7,13: 9,13: 13, \\ & 13: 16,13: 22,13: 23, \\ & 14: 1,14: 16,15: 3, \\ & 15: 4,15: 11,15: 13, \\ & 15: 14,15: 21,15: 24, \\ & 16: 22,16: 25,17: 3, \\ & 17: 23,18: 6,22: 12, \\ & 22: 15,22: 16,22: 22, \\ & \hline \end{aligned}$	26:23, 27:2, 27:3, 27:4, 27:7, 28:1, 28:11, 28:14, 28:16, 30:4, 31:2, 31:4, 31:7, 31:11, 31:12, 31:20, 32:8, 32:12, 32:16, 33:4, 33:7, 33:13, 33:18, 34:1, 34:16, 35:4, 35:19, 36:7, 36:8, 36:19, 37:4, 38:6, 38:13, 38:15, 38:20, 39:3, 39:7, 39:10, 40:18, 41:15, 41:17, 41:19, 41:25, 45:23, 52:15, 52:19, 52:20, 57:17, 60:11, 62:19, 63:1, 63:3, 63:4, 63:16, 63:17, 63:19, 64:2, 64:4, 64:7, 64:13, 64:15, 64:18, 64:19, 64:23, 64:25, 65:1, 65:6, 65:19, 65:20, 66:4, 66:6, 66:12, 66:18, 66:20, 66:21, 67:15, 67:21, 68:7, 68:10, 68:13, 68:15, 77:13, 77:17, 77:18, 77:22, 78:1, 78:3, 78:12, 78:16, 78:19, 89:23, 90:1, 90:10, 93:23, 94:10, 94:13, 95:2, 97:1, 97:5, 97:6, 97:15, 97:22, 97:24, 98:4, 98:6, 101:24, 102:8, 102:19, 102:23, 103:1, 103:18, 104:13, 104:19, 106:13, 108:23, 109:12, 109:13, 110:2, 110:3, 111:16, 112:15, 112:18, 112:21, 118:25, 119:5, 119:11, 120:19, 120:22, 121:13, 122:14 coded [3] - 32:11, 33:12, 61:18 coder [1] - 21:23 codes [2] - 4:4, 78:8 coding [6] - 4:2, 18:16, 23:23, 23:24, 30:17, 39:6	```9:1, 15:1, 18:22, 19:9, 74:4, 74:8, 74:10, 74:18 collection [1] - 21:15 collects [1] - 75:18 coming [2] - 25:1 command [1] - 91:16 commands [1] - 6:16 comments [3] - 64:13, 64:16, 66:2 commerce [1] - 48:13 committing [1] - 85:25 common [5] - 17:11, 33:6, 91:18, 102:22, 121:6 commonly [2] - 77:2, 77:19 commonsense [1] - 89:11 commonsensical [1] - 89:5 communicating [1] - 13:21 communication [3] - 13:23, 73:8, 73:21 communications [1] - 9:5 community [1] - 112:5 company [1]-21:15 compare [2]-16:19, 74:16 compared [2] - 49:7, 74:4 comparing [2] - 74:19, 79:8 comparison [2] - 49:13, 86:4 compartments [1] - 23:18 compel [6]-3:9, 3:25, 5:22, 72:2, 104:19, 109:18 compelling [1] - 104:18 compiler [1] - 63:17 compiling [2]-31:12, 78:3 complete [3] - 9:8, 12:2, 13:15 completely [4] - 35:20, 77:8, 85:16, 114:1 complex [3] - 33:14, 100:20, 102:23 complicated [1] -```


```108:10, 108:19, 109:8, 109:25, 110:8, 110:13, 110:15, 110:23, 111:4, 111:7, 111:11, 111:20, 111:23, 111:25, 112:25, 113:3, 114:21, 117:5, 117:15, 117:17, 118:4, 118:11, 118:13, 118:16, 119:10, 119:22, 120:15, 121:11, 121:19, 121:22, 122:8, 122:24, 123:1 Court's [9]-3:22, 4:22, 7:5, 10:7, 75:13, 110:18, 111:1, 111:14, 121:25 courtroom [1] - 113:11 Courts [1]-100:13 courts [4] - 71:22, 100:22, 113:8, 113:9 CRAIG [2] - 19:22, 62:22 crash [1] - 35:5 create [13]-14:17, 14:18, 16:15, 22:24, 23:7, 27:12, 27:13, 31:5, 31:7, 77:13, 94:22, 107:14 created \([7]-14: 20\), 15:1, 21:18, 21:19, 28:19, 33:22, 96:13 creates [4] - 15:5, 33:19, 97:2, 103:13 creating [2]-27:21, 31:5 credentials [1] - 96:14 credibility [1] - 88:24 credible [1] - 62:13 credited [1] - 102:1 crime [1] - 85:25 Crimes [1] - 70:13 criminal [1] - 66:15 Criminal [1] - 70:12 critical \({ }_{[1]}\) - 48:12 criticism [2]-64:3, 64:17 CROSS [2] - 42:6, 86:20 cross [4] - 43:14, 51:10, 107:21, 113:11```   Cross [2]-2:9, 2:14 cross-examination [2] - 51:10, 113:11	CROSS-   EXAMINATION [2] -   42:6, 86:20   ```Cross-Examination \\ [2]-2:9, 2:14 \\ cross-examine [1] - \\ 107:21 \\ crossed [1] - 113:18 \\ CRR \({ }_{[2]}-1: 23,124: 17\) \\ crux [1] - 100:16 \\ current [2]-3:24, 72:1 \\ customers [1]-21:19 \\ cut [1]-25:24 \\ cyber [1]-20:12```D   Dakota $[2]-22: 4,24: 7$   Dana $[3]-1: 23,124: 3$,   124:17   Daniel $[2]-69: 24$,   $70: 10$   DANIEL $[2]-2: 13$,   $70: 3$   data $[66]-9: 17,12: 4$,   13:11, 13:20, 14:3,   18:23, 18:25, 19:3,   19:5, 19:10, 25:1,   29:4, 29:6, 31:15,   39:5, 39:23, 39:25,   $41: 5,44: 16,44: 17$,   $47: 5,47: 15,47: 20$,   $48: 8,48: 11,48: 23$,   $49: 4,49: 8,49: 10$,   51:14, 51:17, 55:17,   66:23, $66: 24,73: 1$,   $73: 4,73: 7,73: 10$,   $74: 7,74: 8,74: 10$,   $74: 14,74: 15,74: 18$,   $74: 21,74: 22,74: 23$,   $74: 24,75: 1,75: 18$,   $76: 15,84: 4,84: 7$,   $84: 12,84: 23,85: 6$,   $95: 11,95: 13$,   103:20, 112:12   database $[1]-39: 24$   datasets $[3]-49: 16$,   $49: 21,74: 19$   date $[5]-90: 24,91: 5$,   $114: 4,117: 24,118: 3$   Dated $[1]-124: 12$   days $[1]-86: 13$   dealing $[4]-43: 8$,   $100: 19,102: 23$,   119:23   deals $[1]-44: 7$   Dean $[13]-1: 12,2: 9$,   $2: 14,3: 3,42: 8$,   $69: 10,69: 22,99: 11$,   $110: 10,113: 4$,			$\begin{gathered} \text { 52:19, 57:21, 59:6, } \\ 63: 4,75: 16,75: 23, \\ 94: 16,110: 2 \\ \text { describes }[1]-26: 8 \\ \text { describing }[2]-6: 5, \\ 81: 13 \\ \text { description }[2]-79: 5, \\ 85: 14 \\ \text { descriptive }[2]- \\ 63: 20,63: 21 \\ \text { design }[1]-37: 25 \\ \text { designed }[3]-14: 1, \\ 46: 22,116: 12 \\ \text { desired }[1]-59: 18 \\ \text { despite }[1]-103: 23 \\ \text { destination }[1]-84: 8 \\ \text { destroyed }[1]-40: 20 \\ \text { detail }[1]-9: 22 \\ \text { detectors }[1]-100: 23 \\ \text { determine }[8]-13: 24, \\ 34: 13,57: 17, \\ \text { 101:13, 101:15, } \\ \text { 101:17, 105:24, } \\ 108: 24 \\ \text { determined }[1]-49: 9 \\ \text { develop }[1]-59: 4 \\ \text { device }[1]-32: 18 \\ \text { difference }[4]-81: 7, \\ 82: 3,82: 5,85: 18 \\ \text { different }[37]-6: 3, \\ 6: 4,16: 21,23: 17, \\ 28: 21,33: 21,36: 12, \\ 36: 13,36: 23,36: 25, \\ 37: 2,37: 12,37: 18, \\ 37: 20,38: 4,38: 14, \\ 38: 16,41: 14,48: 24, \\ 56: 17,59: 7,63: 22, \\ 63: 23,64: 25,65: 11, \\ 65: 17,66: 3,66: 4, \\ 67: 16,67: 21,76: 12, \\ 86: 3,107: 5,107: 6, \\ 107: 10,120: 7 \\ \text { difficult }[10]-23: 10, \\ 23: 18,41: 23,64: 7, \\ 64: 9,64: 20,80: 6, \\ 80: 8,98: 2,101: 8 \\ \text { digital }[1]-43: 1 \\ \text { DIRECT }[2]-20: 3, \\ 70: 7 \\ \text { Direct }[2]-2: 9,2: 14 \\ \text { direct }[4]-44: 8, \\ 110: 1], 111: 1, \\ 111: 17 \\ \text { direction }[1]-112: 3 \\ \text { directly }[1]-8: 13 \\ \text { directories }[1]-92: 12 \\ \text { directory }[3]-92: 7, \\ 92: 11 \\ \text { disable }[3]-35: 10, \\ 35: 11,90: 5 \end{gathered}$


```disabled [2] - 34:6, 43:23 disassembly [1] - \(31: 3\) disclose [3]-97:13, 98:2, 106:5 disclosed [1] - 9:21 disclosure [1] - 11:14 disconnect \([1]\) - \(5: 18\) discover [2]-111:15, 114:25 discoverable [1] - 11:4 discovery [8] - 3:25, 4:23, 9:4, 11:8, 49:9, 79:23, 105:10, 120:18 discussed [2] - 69:1, 109:9 discussing \({ }_{[1]}\) - 119:19 discussion [2]-83:5, 112:5 discussions \({ }_{[1]}\) - 102:14 displayed [1] - 95:3 dispute [8]-4:23, 6:10, 10:6, 10:8, 15:10, 19:14, 50:25, 120:18 disseminated [1] - 121:2 distinguish \([1]\) - 100:14 District [2]-124:4, 124:5 DISTRICT [2] - 1:1, 1:1 Division [1] - 70:13 docket [2] - 3:2, 60:17 Doctor [2]-51:2, 51:10 doctor \({ }_{[1]}\) - 43:10 doctorate [1] - 21:2 Document [2]-5:3, 5:4 document [2]-3:23, 110:14 documented [2] - 18:25, 117:19 documents [3]-26:5, 26:18, 117:20 done [11]-25:11, 38:7, 38:8, 54:4, 56:3, 57:2, 57:8, 72:19, 79:17, 80:9 doomsday [1] - 114:5 door [7]-10:15, 13:6, 53:19, 54:14, 67:24, 107:24, 116:16 doorstep [1] \(-8: 14\) doorways [1] - 23:17```	```doubt \({ }_{[1]}-53: 5\) down [10] - 12:22, 24:21, 37:1, 37:2, 89:19, 99:14, 104:21, 109:25, 114:24, 120:18 download [2]-6:23, 60:20 downloaded [5] - 6:17, 9:23, 14:8, 60:8, 98:18 downloading [7] - 8:20, 9:11, 54:1, 61:16, 84:22, 98:22, 116:13 Dr [50]-12:7, 16:20, 16:23, 17:7, 18:23, 19:8, 19:10, 19:16, 20:5, 20:7, 20:8, 25:19, 42:8, 47:19, 67:6, 72:18, 72:19, 74:9, 76:2, 77:1, 77:16, 77:21, 77:23, 79:5, 79:20, 79:21, 80:25, 81:15, 81:19, 83:1, 90:14, 102:2, 102:22, 103:2, 110:19, 111:9, 112:12, 113:14, 115:3, 119:1, 119:6, 119:8, 119:13, 119:17, 119:21, 120:10, 120:14, 121:1, 121:16, 121:17 DR [1] - 2:8 drawn [1] - 86:5 drive [2] - 36:22, 118:2 drove [1] - 42:20 duly [3] - 19:24, 20:2, 70:4 duplicated \([1]\) - 39:6 during [7]-4:11, 12:7, 27:10, 36:17, 76:24, 90:24, 95:23``` ```e-mails [1]-5:7 early [1] - 77:16 easier [2]-23:13, 112:20 East [1] - 1:24 easy [4]-65:14, 77:25, 78:1, 78:4 educate [1] - 18:14 education [1]-20:22 effect [2] - 7:25, 40:21 effects [1] - 91:23 effectuate \({ }_{[1]}\) - 121:23```	```effort [2] - 60:20, 66:11 Eighth [4]-100:4, 100:11, 114:14, 114:15 either \([8]-8: 18,28: 7\), 57:2, 66:18, 66:19, 78:11, 92:23, 94:6 eliminate \([1]\) - 121:7 employ [1] - 55:23 employed \([3]-20: 8\), 20:13, 70:16 enabled [1] - 79:4 enables [1] - 81:5 encrypted [5] - 47:21, 84:5, 84:7, 84:8, 84:12 encryption [2]-47:4, 84:7 end [11] - 46:11, 57:25, 62:2, 74:24, 74:25, 78:3, 84:6, 85:1, 113:23, 116:12 end-to-end [1] - 84:6 ends [4] \(-34: 25,37: 2\), 73:8, 75:2 enforcement [2] - 11:13, 82:23 enforcement- sensitive [1]-82:23 engage \({ }_{[1]}\) - 102:13 engaged \([1]\) - 112:1 engineer \([7]\) - 22:11, 22:15, 22:17, 22:21, 23:10, 23:19, 68:21 Engineer [1] - 35:22 engineered [2]-14:1, 27:5 engineering [8] - 22:3, 22:5, 23:4, 24:2, 24:5, 37:6, 37:22, 38:5 English [1]-47:2 enter [3]-79:10, 104:17, 104:18 entered [1] - 79:12 entertain [2]-99:21, 119:16 entire [8] - 12:20, 21:19, 21:20, 25:15, 27:10, 41:3, 41:6, 41:9 entirely [2] - 112:15, 113:24 entirety [4] - 13:3, 13:9, 30:13, 30:14 entitled [1] - 124:9 entry [1] - 79:8 environment [2] - 52:16, 66:22```	```environments [1] - 59:7 error \([7]-32: 15,33: 6\), 33:20, 35:7, 47:16, 93:22, 107:14 errors [12]-32:12, 33:4, 33:7, 33:14, 33:17, 34:19, 37:25, 39:7, 39:8, 41:21, 62:19, 107:14 especially \([1]\) - 59:14 essentially [2] - 107:7, 107:10 establish [2]-11:6, 11:18 ethical \({ }_{[1]}-55: 22\) evaluate [1] - 112:19 evaluated [1] - 111:19 event [1]-11:12 eventually \([1]-51: 18\) evidence [26] - 4:21, 10:2, 10:5, 43:1, 43:2, 43:4, 60:13, 60:19, 61:21, 72:7, 72:13, 79:13, 80:1, 85:12, 100:25, 101:3, 101:23, 102:10, 102:11, 104:15, 105:25, 106:13, 114:9, 114:22, 118:23 evidentiary \({ }_{[1]}-8: 25\) evolved [1] - 66:14 exact [4] - 49:14, 90:24, 91:5, 95:25 exactly [7]-27:6, 40:13, 50:1, 101:20, 108:24, 114:12, 116:20 exaggerating [1] - 58:15 Examination [8]-2:9, 2:9, 2:10, 2:10, 2:11, 2:14, 2:14, 2:15 examination \({ }^{[2]}\) - 51:10, 113:11 EXAMINATION [8] - 20:3, 42:6, 51:8, 52:12, 67:4, 70:7, 86:20, 95:20 examine [4]-44:9, 57:15, 107:21, 112:2 examined [3]-52:15, 53:1 example [2] - 23:12, 64:10 examples [1] - 33:9 exceed [2] - 72:15, 74:1 except \([1]\) - 122:4```	


		$\begin{aligned} & \text { 4:18, 11:24, 14:15, } \\ & \text { 19:3, 19:7, 19:15, } \\ & 51: 3,67: 3,69: 12, \\ & 69: 21,70: 6,86: 16, \\ & 88: 15,89: 22,90: 20, \\ & 95: 16,95: 19,95: 25, \\ & 96: 10,98: 11,98: 20, \\ & 99: 5,99: 10,99: 12, \\ & 99: 15,99: 18,99: 20, \\ & 99: 25,101: 25, \\ & 102: 19,103: 7, \\ & 104: 3,104: 13, \\ & 107: 1,108: 22, \\ & 109: 21,109: 24, \\ & 110: 24,111: 24, \\ & 113: 1,113: 5,113: 7, \\ & 115: 25,117: 4, \\ & 118: 10,118: 12, \\ & 118: 15,119: 9, \\ & 120: 12,121: 9, \\ & 122: 23,122: 25 \end{aligned}$ HONORABLE [1] - 1:9 hoping [1] - 17:8 hosted [1] - 85:20 hostname [1]-7:9 house [4]-79:9, 79:10, 79:12, 79:15 human [13]-23:19, 31:1, 31:11, 33:19, 63:15, 63:20, 63:25, 64:5, 64:9, 64:13, 65:14, 93:22, $98: 3$ human-made [1] - 33:19 human-readable [9] 23:19, 31:11, 63:15, 63:20, 64:5, 64:9, 64:13, 65:14, $98: 3$ humans [5] - 32:23, 33:5, 39:9, 63:24 hundreds [3] - 71:11, 71:12, 71:15 hypothetical [2] - 56:21, 105:6	$\begin{aligned} & \text { 15:5, 15:25, 16:1, } \\ & \text { 16:15, 18:21, 27:13, } \\ & \text { 27:15, 27:23, 27:25, } \\ & \text { 28:2, 28:10, 28:12, } \\ & \text { 29:5, 29:17, 32:2, } \\ & \text { 33:20, 41:5, 61:13, } \\ & \text { 61:19, 76:3, 76:10, } \\ & 76: 13,76: 16,76: 18, \\ & 76: 21,76: 24,77: 2, \\ & 77: 3,77: 7,78: 21 \text {, } \\ & \text { 80:3, 89:24, 94:2, } \\ & \text { 94:9, 94:11, 94:14, } \\ & \text { 94:18, 96:23, 103:4, } \\ & \text { 103:12, 108:17, } \\ & \text { 118:25, 121:14, } \\ & \text { 122:3 } \\ & \text { identifiers [22]- } \\ & 24: 19,27: 22,29: 25, \\ & 32: 4,34: 17,62: 8, \\ & 62: 16,69: 4,69: 7, \\ & 75: 24,76: 1,76: 5, \\ & 77: 4,80: 4,80: 5, \\ & \text { 80:22, } 97: 6,100: 18, \\ & \text { 102:17, 103:16, } \\ & \text { 108:20 } \\ & \text { identify }[5]-12: 5, \\ & \text { 19:4, 41:12, 48:19, } \\ & \text { 116:13 } \end{aligned}$ identifying [6] - 7:4, 7:11, 97:2, 110:4, 120:20, 121:14 identity [1] - 50:13 IDs [1] - 33:21 ifs [2] - 114:6, 115:2 ignoring [1]-115:23 illegal [5] - 55:12, 85:22, 85:23, 86:23, 87:11 image [1] - 60:20 images [13] - 9:22, 14:7, 61:1, 61:16, 73:16, 99:1, 99:2, 99:3, 117:19, 117:21, 118:5, 118:7, 118:8 imaginary ${ }_{[1]}$ - 56:21 immediately [1] - 78:5 impact $[1]-62: 14$ impeachment [1] 101:2 important [5] - 15:2, 71:17, 73:6, 81:23, 93:14 importantly [4]-7:19, 72:17, 80:9, 93:4 improper [1] - 41:11 improperly $[1]$ - 75:1 in-camera [1] - 122:19 inaccurately [2] 103:22, 104:1	```inadvertently [1] - 34:6 inappropriate [2] - 105:21, 106:4 inappropriately [1] - 103:15 incident [2]-8:18, 14:10 include [11]-5:10, 12:6, 13:10, 13:11, 13:12, 18:19, 24:4, 24:18, 25:18, 26:7, 31:23 included [2] - 7:5, 24:17 includes [1] - 18:2 including[2] - 5:6, 7:8 incorporate [3] - 3:19, 28:3, 117:3 incorporates [1] - 30:3 incorrect [3] - 32:8, 32:10, 49:24 incorrectly [1] - 107:9 increased [1] - 103:13 inculpatory [2] - 102:10, 114:22 indeed [2] - 34:17, 37:13 independently [1] - 100:24 indication [1] - 47:6 indictment [5] - 3:10, 8:22, 9:4, 98:9, 117:6 individual [5] - 80:18, 83:11, 91:18, 103:16, 119:17 individuals [1] - 112:6 infection [1] - 91:20 information [106] - 3:20, 4:23, 4:24, 5:1, 5:19, 7:4, 7:7, 7:11, 7:12, 7:18, 7:22, 8:2, 8:9, 8:12, 8:13, 9:1, 9:13, 9:21, 10:8, 10:20, 11:4, 11:7, 11:22, 14:9, 14:12, 14:22, 14:25, 15:6, 15:11, 16:4, 16:5, 16:18, 17:5, 18:24, 22:19, 23:9, 24:25, 26:11, 28:4, 28:25, 29:5, 30:11, 30:18, 30:23, 31:9, 31:13, 31:16, 31:20, 32:4, 32:5, 32:10, 39:6, 40:18, 41:1, 41:12, 48:14, 49:3, 49:24, 49:25, 52:1, 53:9,```

53:11, 53:21, 54:13,
54:15, 56:9, 56:12,
56:13, 57:6, 58:13,
58:25, 59:16, 59:22,
62:10, 66:1, 66:2,
66:3, 66:7, 69:5,
72:6, 73:13, 73:19,
73:23, 75:25, 89:3,
95:3, 97:3, 97:10,
97:12, 101:16,
101:19, 101:23,
102:9, 103:3,
105:11, 107:21,
108:8, 110:1, 112:9, 115:20, 120:11,
122:1, 122:4, 122:20
information's [1] -
115:17
informed [1] - 112:14
inherently [2] - 51:21, 66:7
initial [1] - 9:3
inject [1] - 80:2
injected [1] - 76:14
injects [1] - 32:2
innocent [1] - 100:21
inquire [2] - 42:4, 70:5
inquiring [1] - 115:25
inserted [1] - 34:7
inside [4] - 39:14,
46:20, 46:23, 105:9
install [1] - 92:20
installation [1] - 92:17
installed [1] - 92:25
instructions [11] -
6:15, 6:25, 7:2, 9:10,
9:19, 10:16, 12:25,
17:18, 18:9, 30:25,
73:17
intend [1] - 4:11
intended [8]-45:24,
74:1, 74:6, 92:19,
93:1, 102:22,
112:22, 120:1
intends [1] - 117:7
intent [2]-3:15,
121:25
intentional [3]-7:25,
71:16, 76:4
intentionally [1] - 75:2
intercept [1] - 83:25
Internet [14]-3:15,
7:24, 8:1, 8:7, 24:15, 25:2, 30:11, 35:16, 48:12, 56:6, 58:8,
58:9, 58:11, 72:23
interrupt [1] - 12:12
interruption [1] 62:23
interstate [1] - 42:13
interview [1] - 8:18 intrusion [3]-93:7, 93:8, 93:16 inventory [1] - 21:18 Investigation [1] 70:17
investigation [5] 4:13, 50:22, 70:20, 93:24, 96:17
investigative [2] -
6:13, 11:15
Investigative [1] -
70:13
investigators [2] -
45:10, 46:7
involved [6] - 43:7,
43:12, 45:6, 82:20,
82:21, 82:23
involves [2]-3:25, $4: 14$
involving [6] - 3:11,
$3: 12,3: 13,3: 14$, 81:9, 82:4
IP [21] - 8:4, 8:9, 8:12,
9:14, 25:2, 31:17, 39:19, 39:25, 48:6, 49:14, 50:8, 72:24, 76:18, 76:19, 93:10, 106:17, 106:22, 107:8, 107:11, 116:14, 116:15
ISP [1] - 8:8
issue [16] - 10:20, 33:3, 57:15, 57:19, 70:20, 71:17, 72:1, 77:4, 77:9, 77:12, 99:22, 109:23, 114:4, 115:24, 118:21, 121:8 issued [3] - 44:21, 81:1, 113:17 issues [5] - 11:19, 48:3, 112:3, 112:19, 121:6
item [2]-75:14, 75:22
itemized [1] - 7:4
items [4]-72:23,
79:15, 81:25, 107:17
itself [3] - 10:22,
85:22, 103:1

\mathbf{J}
Java

Java [3] - 63:22,
77:24, 98:5
JEAN [1] - 1:6
Jean [28] - 3:2, 3:5,
$3: 6,3: 9,8: 20,9: 24$,
12:5, 19:4, 50:14,
50:16, 50:20, 50:23,

60:7, 61:14, 72:8, 74:16, 80:18, 82:4, 82:21, 88:11, 91:15, 104:15, 105:9, 106:7, 106:18,
116:4, 116:24,
116:25
Jean's [44] - 4:13,
7:22, 8:13, 8:14,
8:23, 9:1, 9:3, 9:10,
9:13, 9:18, 9:19,
10:1, 10:17, 11:5,
11:11, 13:14, 13:21,
13:24, 13:25, 14:4,
18:19, 25:8, 26:3,
26:5, 43:4, 52:21,
53:2, 53:4, 53:18,
53:20, 53:25, 56:4,
60:12, 73:5, 73:9,
$73: 12,73: 19,74: 5$,
79:24, 90:22, 95:15,
104:5, 112:2
job [2] - 38:11, 64:20
Joe [1]-3:4
joe_alfaro@fd.org [1] -1:20
Jose [1]-1:17
judge [8] - 15:13,
69:16, 89:8, 90:12,
100:2, 106:24,
110:11, 119:14
Judge [18] - 12:23,
17:2, 18:4, 42:2,
42:4, 52:10, 68:2,
100:16, 101:7,
102:14, 105:20,
107:25, 110:7,
111:3, 111:10,
111:13, 112:4,
112:17
judged [1] - 107:20
Judicial [1] - 124:11
July [3]-91:3, 117:24, 118:2
June [1] - 3:10
jury [2] - 100:8, 103:23
justify [2]-89:19,
122:13

Kansas [1] - 21:1
Kearney [5] - 20:10,
20:15, 20:24, 42:12,
42:15
kind $[7]$ - 17:10, 17:24,
23:6, 38:23, 89:5,
116:11, 116:22
knock [1] - 116:16
knowing [2] - 85:3,

nationwide [1] - 114:1 nature [4]-86:8,
89:11, 91:20, 98:6
near [1] - 78:11
Nebraska [3] - 20:10, 20:14, 20:24
necessarily [15] -
10:5, 31:13, 35:5,
38:2, 41:15, 43:16,
44:3, 47:25, 48:1,
49:12, 62:17, 68:12, 81:17, 113:19, 117:23
necessary [6] - 5:24,
16:23, 18:24, 33:25,
89:18, 111:18
need [22] - 8:25,
$11: 14,14: 13,25: 14$, 31:25, 32:12, 38:13, 38:25, 39:4, 69:18, 71:5, 73:24, 79:18, 84:25, 94:20, 103:3, 103:4, 104:9,
112:18, 119:11,
121:7, 122:17
needed [1] - 72:14
needing [1] - 61:17
needs [3] - 32:19,
94:3, 94:18
nefarious [7]-53:14,
53:24, 54:21, 56:3,
56:22, 59:12, 67:7
network [14] - 6:12,
49:8, 55:6, 71:10,
71:13, 74:8, 74:13,
83:15, 84:4, 84:23, 91:21, 91:23, 93:3,
95:10
networking [1] - 91:17
networks [1] - 59:14
never [2] - 42:9, 79:11
new [4] - 28:7, 56:19,
96:13, 96:15
next [3]-28:18, 30:12,
86:14
NIT ${ }_{[132]}-6: 6,6: 12$,
6:13, 6:23, 7:7, 7:17, 9:8, 9:18, 10:6, 10:13, 12:2, 12:6, 12:10, 12:25, 13:2, 13:7, 13:13, 13:23, 14:5, 14:17, 14:18, 15:21, 16:2, 16:11, $16: 14,16: 16,17: 4$, 17:6, 17:17, 18:6, 18:12, 18:15, 18:17, 19:4, 24:10, 25:8, 26:4, 26:8, 26:19, 26:21, 27:3, 27:4, 27:7, 27:12, 27:13,

28:3, 28:6, 28:9, 28:19, 28:24, 28:25, 30:1, 30:6, 30:7, $31: 7,31: 24,43: 2$, 44:2, 44:7, 44:10, 44:13, 45:13, 45:20, 45:22, 46:8, 46:18, 46:19, 47:5, 47:20, 49:5, 49:8, 52:6, 52:15, 52:19, 53:3, 53:5, 53:18, 54:7, 54:10, 54:13, 54:15, 57:5, 63:1, 63:4, 64:12, 66:18, 67:15, 67:16, 68:23, 72:11, 72:16, 72:23, 73:2, 73:5, 75:18, 76:11, 76:14, 76:17, 76:25, 77:5, 77:13, 78:6, 78:9, 79:4, 79:19, 81:17, 88:9, 88:12, 90:21, 95:8, 96:9,
96:10, 96:16, 96:19,
96:20, 97:15, 97:24,
102:8, 109:12,
112:10, 114:11, 116:12, 116:20, 116:24
NIT's [3] - 6:25, 10:15, 95:14
NIT/payload [1] 30:22
NITs [1] - 22:7
NO [1] - 1:5
nobody [1] - 115:14 nodes [1] - 71:14 nomenclature [4] -
3:20, 6:1, 6:4, 17:11 noncustodial [1] 8:17
none [2] - 37:7, 43:10
nonissue [1] - 80:23
normal [1] - 23:1
note [3]-81:23,
85:14, 86:2
noted [3] - 73:20, 77:23, 111:23 notes [1] - 107:1 nothing [8] - 37:21, 73:1, 77:7, 82:8, 82:18, 94:8, 103:21 notice [1] - 93:16 noticed [1] - 36:4 noting [1] - 73:3 Nth [1] - 89:17 number [25] - 3:3,
3:23, 4:14, 9:7, 9:25, 11:3, 16:1, 16:3, 16:18, 16:19, 61:19, 61:22, 77:23, 80:20,
83:20, 85:9, 89:1,
95:25, 96:21, 103:9,
$103: 13,110: 20$
$120: 20,121: 14$
numbers $[4]-80: 6$,
92:13, 97:2, 110:4
numerous $[1]-71: 24$
oath [2] - 19:18,
109:16
object [1] - 5:21
objection [4] - 11:6, 67:20, 88:14, 89:21
objects [1] - 10:24
observed [4] - 5:14,
72:20, 74:3, 79:22
obtain [1] - 107:21
obtained [1] - 8:11
obtaining [1] - 60:11
obviously [4] - 14:9, 59:6, 105:1, 105:3
occasions [1] - 96:9
occur [5] - 17:7,
27:10, 33:2, 33:4, 54:2
occurred [8] - 48:17,
54:6, 85:13, 114:6,
114:10, 114:11,
117:11
occurs [1] - 31:13
October [3] - 1:9, 2:5, 124:12
odds [4] - 57:12, 85:3,
85:25, 86:11
OF ${ }_{[4]}-1: 1,1: 3,1: 8$,
124:1
off-the-shelf [1] -
82:20
offense [1] - 42:15
offensive [1] - 46:10
offensive-based [1] 46:10
Office [1] - 1:13
Official [3]-1:23,
124:3, 124:17
OFFICIAL [1] - 124:1
often [2]-32:25, 100:12
once [6]-41:13,
80:20, 88:11, 96:10, 103:6
One [4] - 98:16, 99:4, 117:5, 118:7
one [78]-3:13, 3:14, 4:12, 9:7, 10:8, 10:24, 11:3, 13:8, 17:4, 18:1, 23:5, 27:14, 27:23, 32:9,

34:25, 36:9, 36:21,
36:25, 37:2, 37:15,
38:11, 38:12, 40:12,
45:10, 46:7, 48:6,
49:2, 53:8, 53:12,
55:1, 57:2, 57:14,
58:18, 64:8, 65:15,
65:16, 66:5, 66:6,
67:13, 67:17, 71:9,
$75: 14,76: 24,77: 12$,
78:7, 78:11, 78:12,
81:9, 82:4, 82:6,
86:4, 88:7, 91:25,
93:5, 93:13, 96:20,
96:21, 96:23, 97:20,
97:21, 98:12,
103:11, 107:1,
108:24, 110:1,
110:11, 110:23,
114:4, 117:10,
118:22, 120:5, 120:6
one-time [1] - 76:24
one-to-one [3] -
78:11, 78:12, 86:4 ones [3]-36:16,
38:17, 77:25
online [2]-21:20,
50:17
Onyx [3] - 21:15,
21:16, 21:17
open [2]-54:8, 54:14
opened [1] - 67:24
opening [1] - 75:11
operate [1] - 103:14
operated [1] - 34:13
operating [11] - 6:25,
7:10, 9:10, 17:18,
37:12, 39:14, 39:17,
51:20, 91:15, 92:3,
95:24
operation [7] - 83:14,
83:22, 84:15, 85:4,
85:16, 88:12, 90:25
opine [1] - 50:21
opining [1] - 111:11
opinion [10] - 33:25,
68:6, 78:22, 78:25,
83:8, 87:14, 111:18,
118:18, 118:20,
122:12
opportunities [1] -
56:6
opportunity [1] 30:16
opposed [4] - 7:24,
23:11, 46:20, 64:4
order [36]-3:21, 3:22,
6:2, 7:5, 12:9, 13:5,
17:5, 21:19, 22:10,
22:13, 25:14, 27:12,

27:13, 28:13, 41:4, 55:8, 55:20, 68:15, $72: 14,73: 25,83: 10$, 83:17, 83:22, 84:24, 94:21, 104:17,
104:18, 119:5,
119:16, 120:2,
120:13, 121:12,
121:22, 121:24,
122:10, 122:21
ordered [3] - 47:15,
119:4, 121:20
orders [2] - 119:23,
120:4
organizer [1] - 17:24
organizers [1] - 109:9
original [2]-23:7,
65:1
originally [1] - 78:7
originated [3]-61:2,
62:9, 66:14
originating [1] - 96:21
OS10 [1] - 32:21
otherwise [3]-10:6,
60:25, 120:2
outline [1] - 19:14
output [3]-72:20,
74:3, 79:22
outside [7] - 18:15, 18:17, 21:13, 35:14, 93:7, 93:8, 93:16 over-the-Internet-
based [1] - 48:12 overwritten [3] -
51:15, 52:2, 112:12
own [4]-9:22, 85:8,
87:24, 102:13
\mathbf{P}
p.m [4] - 1:9, 90:17,

123:2
packet [1] - 8:2
packets [3]-8:4, 8:5,
8:9
page $[8]-6: 7,58: 23$,
58:25, 71:9, 81:12, 110:20, 110:25,
124:9
Page [2]-2:4, 46:5
pages [1] - 14:7
paid [1] - 20:19
papers [1]-5:10
paragraph [4] - 44:24,
110:20, 110:25,
111:2
paranoid [2] - 58:6,
58:11
paraphrase [2] -
59:24, 90:7

Parker ${ }_{[1]}-1: 13$
part [23]-12:6, 12:10,
17:3, 17:4, 17:5, 18:2, 18:5, 29:24, 38:11, 39:20, 46:6, 61:4, 61:11, 64:12, 76:10, 77:5, 94:25, 96:17, 97:8, 106:25, 109:22, 110:9, 118:8
partially ${ }^{[1]}$ - 64:6
participate [1] - 69:15 particular ${ }_{[10]}-4: 13$, 16:5, 16:7, 27:24, 31:17, 47:6, 93:9, 98:6, 109:20, 111:21
particularly [3] - 97:6,
100:19, 102:23
parties [4]-5:6, 5:9, 5:16, 10:24
parties' ${ }^{[1]}$ - 5:2
parts [2]-17:3, 18:16 party $[7]-35: 14$, 53:14, 54:20, 59:10, 60:10, 108:5, 109:5 pass [2]-10:13, 42:2 passage [1] - 51:24 passed [3]-42:12, 51:22, 53:19
passes [1] - 51:25
past [2]-21:25, 67:18
path $[3]-36: 9,89: 19$, 114:24
paths [4]-36:10,
36:13, 38:3, 112:21
pathways [9]-36:19,
36:25, 37:7, 37:18, 37:20, 37:21, 38:8, 41:21
payload [21] - 15:5, 16:10, 16:14, 17:17, 18:7, 18:9, 18:13, 18:15, 18:17, 27:8, 27:12, 27:16, 28:20, 30:6, 32:2, 52:7, 57:7, 63:2, 72:12, 72:17, 72:21
payloads [1]-17:13
PCAP [13]-29:6,
31:16, 40:1, 40:4, 43:3, 44:18, 49:3, 66:24, 74:7, 95:3, 95:6, 95:11, 95:13
penetration [1]-24:5
people [31]-35:22, 45:6, 56:5, 56:8, 56:11, 56:14, 56:15, 56:19, 58:4, 58:5, 59:3, 59:4, 59:13, 59:14, 59:23, 67:6, 87:4, 88:1, 88:2,

88:3, 88:5, 88:9, $88: 20,88: 22,88: 24$, 89:12, 93:12, 119:23, 119:24 percent [2]-50:4, 113:24 perfect [1] - 71:21 performs [1] - 91:19 perhaps [1] - 58:17 period [4]-95:23, 96:2, 112:13, 117:14 permanent [1]-26:25 permanently [1] - 46:3 permission [2] -
120:13, 122:5 person [15]-23:1,
50:7, 50:10, 53:1, 55:7, 56:2, 56:21, 57:22, 80:16, 108:16, 114:4, 116:17, 120:10
pertain [1] - 98:17
pertaining [1] - 72:3
Ph.D [1] - 21:7
phone [1] - 32:22
physical [2] - 40:19, 79:8
pick [7]-54:14, 65:15, 79:10, 79:11, 79:13, 79:14, 108:25 picked [1] - 107:23 pictures [1] - 79:16 piece [13] - 10:8, 10:23, 10:25, 16:12, 22:22, 26:22, 36:8, 37:18, 40:7, 72:13, 81:8, 91:21, $97: 11$ pieces [7]-7:4, 7:12, 8:25, 15:11, 16:3, 73:23, 110:1
place [4]-14:2, 39:18,
57:23, 117:7
Plaintiff [1] - 1:4
plan [1]-102:12
planned [1] - 35:5 play [1] - 48:3
Playpen [40] - 6:18, 10:11, 14:8, 19:1, 25:7, 39:4, 43:8, 50:7, 56:24, 60:9, 61:16, 66:15, 70:19, 80:15, 82:21, 82:24, 83:6, 83:13, 83:16, 83:19, 84:6, 84:10, 84:12, 84:17, 86:3, 86:9, 86:14, 87:15, 87:19, 87:21, 87:22, 88:13, 95:23, 96:8, 96:17, 96:20, 98:18, $98: 23,114: 2,117: 8$

> plea [2] - 101:17, 102:13
> plow [1] - 114:23
> plus [1]-121:16 point [19] - 9:7, 27:23, 44:4, 50:18, 55:1, $60: 3,60: 4,78: 2$, $78: 6,89: 18,101: 6$, $105: 5,110: 5$
> 110:20, 111:1,
> 111:20, 111:22,
> 115:2, 116:6
population [1] - 58:11
pornography [16] -
3:16, 6:18, 6:23, 8:21, 9:11, 60:8,
73:16, 84:22, 86:10, 87:13, 98:17, 98:22, 108:13, 109:6,
116:13, 118:1
port [1] - 93:9
portion [2] - 5:20,
47:23
ports [2]-93:10,
93:13
position [10] - 11:10,
21:9, 59:11, 60:18, 60:23, 61:1, 75:21, 101:20, 105:18, 122:2
possessing [1] - 3:13 possession [4] 18:18, 99:1, 117:17, 117:23
possibilities [10] 35:7, 38:14, 41:14, 48:17, 53:12, 57:3, 64:22, 102:20, 106:18, 114:6 possibility [15] - 32:9, 33:16, 39:8, 46:2, 51:11, 54:7, 57:11, 57:13, 62:15, 74:25, 85:11, 105:14, 106:21, 111:14, 119:20
possible [22] - 33:20,
33:23, 34:4, 34:9,
34:19, 36:12, 37:25, 41:21, 51:22, 57:25, 58:1, 62:19, 88:21, 90:4, 93:21, 96:15, 104:4, 107:14, 112:15, 115:8, 118:18, 120:25 possibly [4] - 38:19, 83:5, 111:15, 115:22 posture [1] - 4:22 potential [1] - 111:11 potentiality [1] - 57:18
potentially [4] - 54:20,
56:3, 108:12, 122:1
precaution [1] - 53:10
precise [2] - 56:25, 121:24
precludes [1] - 84:9
preparation [1] -
101:4
prepare [1] - 45:7
prepared [2] - 56:4,
121:9
preparedness [1] 55:7
preparing [4] - 93:23,
100:4, 104:16, 105:25
present [10] - 4:22,
54:5, 83:1, 89:2, 98:10, 100:7,
103:23, 105:23,
112:10, 113:11
presented [1] - 11:19
preserving [1] - 55:9
prevent [1] - 11:14
previous [3]-36:2,
79:1, 84:4
previously [7] - 36:1,
38:23, 53:17, 70:22, 71:2, 73:20, 94:16 prime [1] - 58:5
privilege [2]-11:13, 11:17
proactive [2] - 55:10, 57:5
probability [2]-104:2,
106:15
probable [1] - 57:24
Procedural [1] - 2:6
proceed [2] - 19:14,
69:23
proceeding [3] - $3: 1$, 3:8, 4:20
proceedings [4] -
47:20, 62:23, 123:2, 124:8
Proceedings [1] -
1:21
process [10]-27:11, 30:13, 31:10, 38:24, 66:1, 78:2, 80:6, 94:22, 94:25, 112:11 produce [2] - 11:2, 119:4
produced [5] - 5:21, 9:7, 9:16, 13:13, 44:16
producing [1] - 63:14 product [1] - 21:20 professor [2] - 20:9, 21:10
proffer [2] - 103:25, 106:12 program [5] - 22:12,
31:1, 66:8, 78:13, 95:12
programmed [2] -
21:17, 32:23
programmer [4]
21:14, 21:23, 21:24, 58:20
programmer's [1] 58:21
programming [9] -
28:15, 33:5, 38:10,
65:3, 65:13, 65:20,
77:19, 77:22, 80:6
programs [5] - 18:16,
22:11, 23:25, 33:10, 92:14
prompt [3] - 67:1,
95:18, 99:9
pronounce [1] - 111:4 proper [3] - 4:3, 48:21, 69:5
properly [6] - 25:15,
32:11, 39:20, 39:25, 50:22, 80:9
prosecuted [1] - 114:1
prosecutor [1] - 43:14
protect [1] - 56:10
protections [2]-
82:13, 82:14
protective [6] - 119:5, 119:23, 120:2,
121:12, 121:24,
122:10
prove [6] - 101:22,
104:9, 104:10, 105:1, 105:2, 117:7
proved [2] - 101:11, 101:12
provide [7] - 4:25,
25:6, 65:5, 65:6,
66:12, 97:9, 109:18
provided [40] - 4:24,
7:20, 13:20, 17:25,
26:18, 27:5, 30:17,
$30: 18,30: 21,30: 22$,
31:14, 31:15, 31:19, 40:22, 40:25, 49:9,
50:18, 63:1, 63:6,
63:9, 64:4, 65:8,
66:24, 68:24, 72:7,
72:10, 72:17, 74:9,
74:16, 74:24, 75:25,
78:15, 79:1, 79:17,
79:19, 79:23, 97:15,
109:17, 113:15,
121:15
provider [1] - 8:8


```special [2]-70:11, 70:18 specialized [1] - 22:5 specific [11] - 7:7, 7:9, 9:13, 23:22, 28:9, 53:19, 60:20, 64:24, 83:15, 92:9, 107:17 specifically \([7]-4: 14\), 9:9, 12:21, 15:19, 41:20, 44:24, 109:22 specifics [1]-61:4 speculation [3]- 113:24, 114:19, 116:8 spelled [1] - 70:11 squeeze [1] - 89:17 stable [1]-119:6 stage [1]-106:5 stand [1] - 19:16 standard [4]-48:11, 104:22, 114:16, 114:18 standby [1] - 69:15 stands [1] - 71:13 start [4]-17:12, 22:23, 29:15, 65:22 starting [2]-15:25, 60:3 starting-out [1] - 15:25 stat \({ }_{[1]}-88: 6\) State [3]-21:1, 22:4, 24:7 state [6] - 4:21, 18:5, 20:5, 44:25, 93:15, 103:8 statement [9]-12:2, 45:4, 46:13, 47:8, 48:1, 77:6, 88:25, 111:17, 113:22 statements [1] - 75:9 STATES [2] - 1:1, 1:3 States \([7]-1: 13,3: 2\), 3:4, 72:3, 124:4, 124:6, 124:11 statically [1] - 37:5 stating [2]-3:21, 61:14 Steele [1]-1:18 stenographically \({ }_{[1]}\) - 124:8 step [9]-28:18, 29:19, 29:20, 30:8, 30:12, 32:1, 38:24, 80:11, 99:14 steps [1] - 17:7 still [9] - 17:16, 80:13, 80:21, 80:24, 82:22, 88:8, 114:22, 115:1, 121:17```	$\begin{aligned} & \text { still-sensitive }[1]- \\ & \text { 82:22 } \\ & \text { stock }[2]-113: 10, \\ & 113: 14 \\ & \text { stop }[2]-42: 16,42: 22 \\ & \text { storage }[7]-48: 23, \\ & 49: 4,49: 17,74: 13, \\ & 74: 21,74: 23,75: 4 \\ & \text { stored }[17]-15: 1, \\ & 18: 22,19: 4,19: 9, \\ & 40: 1,41: 2,49: 11, \\ & 75: 1,76: 7,94: 10, \\ & 94: 13,94: 18,94: 20, \\ & 94: 21,103: 20, \\ & \text { 103:22, 107:13 } \\ & \text { storing }[2]-49: 10, \\ & 94: 22 \\ & \text { straightforward }[1]- \\ & 113: 21 \\ & \text { strategy }[1]-102: 13 \\ & \text { stream }[15]-9: 17, \\ & 19: 6,19: 10,29: 6, \\ & 31: 15,41: 5,44: 16, \\ & 44: 17,47: 5,47: 20, \\ & 66: 24,73: 1,73: 4, \\ & 73: 7,74: 8 \\ & \text { streams }[2]-25: 1, \\ & 55: 17 \\ & \text { Street }[2]-1: 24,37: 1 \\ & \text { strictly }[1]-120: 25 \\ & \text { string }[1]-6: 15 \\ & \text { stronger }[1]-82: 16 \\ & \text { structure }[1]-92: 8 \\ & \text { stuff }[3]-17: 13, \\ & 67: 25,87: 6 \\ & \text { subject }[3]-66: 19, \\ & 109: 4,113: 11 \\ & \text { submitted }[4]-8: 6, \\ & 25: 18,25: 21,102: 3 \\ & \text { subpoena }[3]-8: 7, \\ & 8: 11,116: 15 \\ & \text { subpoenas }[1]-50: 9 \\ & \text { subscriber }[1]-8: 12 \\ & \text { subsequent }[1]- \\ & 96: 14 \\ & \text { substance }[1]-42: 22 \\ & \text { substantial }[1]-59: 2 \\ & \text { subtract }[1]-14: 12 \\ & \text { successfully }[1]- \\ & 96: 11 \\ & \text { sufficient }[4]-37: 16, \\ & 41: 1,51: 22,122: 20 \\ & \text { sufficiently }[1]-103: 2 \\ & \text { suggest }[1]-85: 12 \\ & \text { Suite }[1]-1: 18 \\ & \text { summarize }[1]-21: 10 \\ & \text { summer }[1]-42: 20 \\ & \text { super }[1]-8: 16 \\ & \text { superfluous }[1]- \\ & 105: 14 \end{aligned}$	```superseding \({ }_{[2]}\) - 3:10, 117:6 supplement \([1]\) - 5:6 supply [1] - 41:9 suppose [1] - 33:16 supposed [5] - 26:20, 28:5, 61:25, 114:12, 116:20 suppress [2]-3:22, 70:24 suppression [11] - 5:17, 7:5, 7:16, 7:21, 10:20, 71:17, 88:15, 103:8, 117:3, 118:21, 120:8 surreptitiously \({ }_{[1]}\) - 60:11 sustain [1] - 89:21 sworn [3]-19:24, 20:2, 70:4 synonym [1]-81:7 synonymous [3]- 18:6, 46:12, 63:3 synonymously [1] - 16:11 system [22] - 7:10, 21:19, 26:24, 27:1, 34:3, 34:11, 34:20, 35:24, 39:14, 39:17, 41:3, 41:6, 43:19, 45:1, 45:25, 46:18, 46:20, 51:20, 90:5, 91:15, 91:17, 92:3 systems [5] - 21:17, 31:18, 34:3, 37:12, 59:21 \\ Tacoma [1]-25:13None```	$\begin{aligned} & \begin{array}{l} 82: 19 \\ \text { technology }[4]- \\ 82: 21,82: 22, \\ 100: 20,100: 22 \\ \text { teleconference }[1]- \\ 4: 5 \\ \text { temporarily }[1]-46: 1 \\ \text { temporary }[2]-26: 25, \\ 45: 20 \\ \text { ten }[2]-32: 10,61: 25 \\ \text { tend }[1]-37: 23 \\ \text { tends }[1]-119: 24 \\ \text { term }[12]-12: 25, \\ 16: 10,18: 1,22: 7, \\ 29: 9,63: 2,63: 3, \\ 63: 4,63: 19,63: 20, \\ 63: 21 \\ \text { terminology } \\ 5: 18,-4: 3: 25,10: 18, \\ 12: 14,15: 4,18: 14 \\ \text { terms }[4]-4: 23,6: 8, \\ 48: 24,53: 25 \\ \text { terrible }[1]-37: 3 \\ \text { test }[13]-13: 17, \\ 36: 11,37: 12,37: 17, \\ 38: 14,38: 20,38: 21, \\ 66: 22,91: 12,91: 18, \\ 100: 3,105: 22, \\ 105: 25 \\ \text { tested }[7]-72: 19, \\ 74: 2,79: 20,91: 16, \\ 100: 24 \\ \text { testified }[24]-5: 13, \\ 20: 2,38: 23,47: 5, \\ 47: 19,47: 22,52: 3, \\ 53: 18,62: 6,70: 4, \\ 70: 22,77: 21,79: 21, \\ 81: 15,81: 20,84: 3, \\ 94: 2,103: 2,109: 11, \\ 109: 15,109: 19, \\ 113: 25,119: 1,122: 1 \\ \text { testify }[4]-15: 15, \\ 19: 8,19: 11,77: 16 \\ \text { testifying }[6]-4: 16, \\ 5: 11,47: 9,62: 12, \\ 71: 22,71: 24 \\ \text { testimony }[35]-5: 16, \\ 7: 16,7: 20,12: 8, \\ 12: 9,15: 19,47: 23, \\ 53: 15,59: 25,71: 1, \\ 71: 7,71: 19,71: 21, \\ 75: 9,76: 2,79: 1, \\ 79: 5,83: 1,83: 8, \\ 88: 24,95: 7,97: 14, \\ 101: 4,102: 2,102: 4, \\ 102: 24,106: 21, \\ 106: 25,109: 20, \\ 113: 15,113: 16, \\ 115: 3,115: 4, \\ 117: 12,120: 21 \end{array}, \end{aligned}$	


```three [4] - 17:3, 45:11, 45:12, 120:18 throughout [1] - 120:16 thrown [1] - 103:9```	$\begin{aligned} & \text { transferring }[1]- \\ & \text { 47:15 } \\ & \text { translates }[1]-65: 19 \\ & \text { translation }[1]-23: 9 \\ & \text { transmission }[3]- \end{aligned}$	$\begin{aligned} & 122: 19 \\ & \text { types }[2]-43: 25,87: 5 \\ & \text { typically }[3]-39: 13, \\ & 43: 17,77: 21 \end{aligned}$	$\begin{aligned} & \text { 110:4, 118:25, } \\ & \text { 120:20, 121:14, } \\ & \text { 122:3 } \\ & \text { unit }[1]-70: 14 \\ & \text { UNITED }[2]-1: 1,1 \end{aligned}$	$\begin{aligned} & \text { users' }^{[1]}-6: 16 \\ & \text { uses }_{[1]}-85: 19 \\ & \text { utilized }[2]-10: 10, \\ & \text { 10:12 } \\ & \text { utilizing }[1]-86: 12 \end{aligned}$
tie [1] - 41:4	4:3,	U	United [7] - 1:13, 3:2,	
tied [1] - 93:10 timeframe ${ }_{[1]}-90: 25$	transmitted $[1]-7: 6$ travel [1] - 36:24	U.S [1] - 42:9	$\begin{aligned} & 3: 4,72: 3,124 \\ & 124: 6,124: 11 \end{aligned}$	V
$\begin{aligned} & \text { TIMOTHY }{ }_{[1]}-1: 9 \\ & \text { tiny }[1]-85: 9 \end{aligned}$	$\begin{array}{\|r} \text { trial [3] - 100:25, } \\ \text { 102:13, 104:16 } \end{array}$	Ubuntu [1] - 92:4 ultimately [2] - 50:6,	$\begin{gathered} \text { universe [4] - 5:19, } \\ 5: 20,14: 11,31: 23 \end{gathered}$	$\begin{aligned} & \text { vacation }[1]-42: 21 \\ & \text { value }[2]-8: 25,43: 21 \end{aligned}$
Title [1] - 124:6	trigger [1] - 96:16	$\begin{aligned} & \text { 120:3 } \\ & \text { umber } \end{aligned}$	University [6] - 20:9, 20:14, 20:24, 21:1,	variant [1] - 92:4
$\begin{aligned} & \text { today }[10]-3: 8,20: 16 \\ & 75: 10,76: 2,77: 16, \end{aligned}$	104:3, 106:2, 124:7	unanticipated	$22: 4,24: 7$	various [4] - 76:22
:15, 113:	tru	36:	versity [1] - 24	87:21, 92:12, 92:
$\begin{aligned} & \text { 115:10, 120:17, } \\ & 122: 22 \end{aligned}$	$\begin{aligned} & \text { try }[3]-35: 2,115: 18, \\ & 120: 24 \end{aligned}$	$\begin{aligned} & \text { unauthorized }{ }_{[1]} \\ & 39: 11 \end{aligned}$	$\begin{aligned} & \text { unless }[4]-10: 24, \\ & 12: 22,15: 22,19: 13 \end{aligned}$	vary [1]-34:4 verbatim [1]-104:21
$\begin{aligned} & \text { together }[2]-28: 23, \\ & \text { 122:9 } \end{aligned}$	$\begin{gathered} \text { trying }[13]-6: 7,23: 16, \\ 45: 18,56: 10,56: 12, \end{gathered}$	uncertain [1] - 8:24 under [9]-2:19, 6:19,	$\begin{aligned} & \text { unlikely }[7]-58: 1, \\ & 58: 3,60: 2,60: 5, \end{aligned}$	$\begin{gathered} \text { verified }[3]-22: 18, \\ 34: 17,100: 24 \end{gathered}$
$\text { took }[7]-46: 19,$	$57: 20,59: 14,59: 19$	$\begin{aligned} & \text { 11:3, 98:19, 98:23, } \\ & \text { 109:15, 114:1, } \end{aligned}$	112:9, 116:2, 116:7 unreliable [1] - 47:21	$\begin{gathered} \text { verify }[18]-22: 17, \\ 25: 15,37: 6,37: 1 \end{gathered}$
73:21, 106:15, 117:7	107:3, 115:19	118:17, 119:5	up [27] - 4:20, 16:4	20, 38:15, 39:4
toolkit [1]-35:22	Tsyrklevich [4] -	unencrypted [1] - 7:	16:6, 23:5, 34:2	39:11, 44:16, 49:15,
tools [12]-11:16,	25:19, 111:6, 111:8,	```unexpected [2] - 33:7, 35:1```	$\begin{aligned} & 37: 2,41: 17,44: 1 \\ & 51: 17,52: 15,55: \end{aligned}$	$\begin{aligned} & \text { 50:4, 64:15, 69:3, } \\ & \text { 72:14, 73:24, 73:25, } \end{aligned}$
73:25, 74:5, 75:17,	Tsyrklevich's [1]	unin [1] - 34:9	56:23, 57:5, 57:2	21, 102:25
80:14, 82:18, 85:5,	110	unintended [10]	62:8, 62:9, 64:8,	verifying [1] - 39:19
85:17, 104:1	turn [2]-24:12, 90:19	33:11, 34:5, 34:10	6:5, 66:9	version [9]-28:7,
top [1] - 92:8	turned [20]-9:25,	91:22, 93:17, 93:22,	68:22, 76:17, 78:3,	28:8, 63:10, 63:13,
$\begin{gathered} \text { Tor }[32]-7: 24,10: 10, \\ 10: 15,13: 6,25: 3, \end{gathered}$	$\begin{aligned} & \text { 10:4, 13:4, 15:11, } \\ & 15: 13,15: 16,15: 1 \end{aligned}$	$\begin{aligned} & 93: 25,103: 14 \\ & 115: 9,120: 2 \end{aligned}$	$\begin{aligned} & \text { 92:11, 92:15, } \\ & \text { 112:19, 116:2 } \end{aligned}$	$\begin{aligned} & 63: 15,97: 1,98: 2, \\ & 109: 16 \end{aligned}$
53:20, 55:4, 55:6,	:13, 73:4	unintentional [1]	update [1] - 51:19	versions [1] - 109:17
$\begin{aligned} & 56: 25,57: 4,57: 9 \\ & 58: 10,67: 14,68: 3 \end{aligned}$	$75: 8,75: 20,75: 22,$	93:4	$\begin{aligned} & \text { updated }[3]-32: 1 \\ & 32: 19,32: 22 \end{aligned}$	$\begin{gathered} \text { versus }[5]-3: 2,23: 15, \\ 72: 3,87: 18,112: 22 \end{gathered}$
71:10, 71:13, 82:13,	81:20, 81:25, 82:5	75:3	useful [5] - 39:24	via [9]-1:21, 2:8, 4:5,
83:15, 84:1, 84:2,	turning ${ }_{[1]}$ - 78:21	unique [80] - $7: 6$	43:24, 105:4,	7:23, 30:11, 69:15,
84:4, 84:5, 84:19,	turns [1] - 114:22	14:19, 14:20, 14:23,	109:11, 122:	69:17, 69:18
84:22, 85:6, 85:16,	TV [1] - 4:6	15:5, 15:25, 16:15,	usefulness [1]	viable [1] - 82:11
$85: 22,85: 24,85: 25,$	two [27] - 9:17, 17:10,	17:23, 18:20, 24:19,	107:20	video [3]-69:15,
86:6, 87:18, 108:21 $\text { total }_{[1]}-17: 5$	$\begin{aligned} & : 5,19: 10,25: 1, \\ & 9: 6,31: 15,44: 16 \end{aligned}$	28:10, 28:12, 29:5,	user [25] - 6:20, 9:23,	videoconference
touched [1]-74:11	44:17, 56:17, 65:11,	$\begin{aligned} & \text { 29:17, 29:24, 32:2, } \\ & 32: 3.33: 19,61: 13 \end{aligned}$	$27: 24,28: 9,34: 7$	2:8
$\begin{aligned} & \operatorname{trace}[2]-50: 9,112: 16 \\ & \operatorname{track}[2]-76: 6,76: 21 \end{aligned}$	$\begin{aligned} & 73: 4,73: 7,73: 23, \\ & 74: 8,74: 19,75: 5, \end{aligned}$	61:18, 62:8, 69:4,	$\begin{aligned} & 38: 18,41: 4,41: 11, \\ & 48: 7,48: 19,55: 19, \end{aligned}$	view [3] - 3:15, 58:20 viewed [2]-33:15,
tracked [1] - 14:7	:10, 85:18, 95:10,	69:7, 75:24, 76:1	58:11, 58:17, 76:6,	59:1
$\begin{aligned} & \text { tracking }[2]-38: 7, \\ & 76: 11 \end{aligned}$	$\begin{aligned} & \text { 97:19, 109:17, } \\ & \text { 109:25, 110:1, } \end{aligned}$	$\begin{aligned} & 76: 3,76: 5,76: 10, \\ & 76: 13,76: 16,76: 17, \end{aligned}$	$\begin{aligned} & 76: 11,76: 15,76: 22, \\ & 78: 4,78: 8,83: 15, \end{aligned}$	viewing [3]-58:18, 58:22, 58:23
$\begin{gathered} \text { traffic }[3]-83: 25, \\ 84: 1,84: 18 \end{gathered}$	$\begin{aligned} & \text { 110:5, 112:16 } \\ & 120: 18 \end{aligned}$	$\begin{aligned} & 76: 21,76: 24,77: 2, \\ & 77: 4,77: 7,78: 21, \end{aligned}$	$\begin{aligned} & 87: 10,96: 12,96: 13 \\ & 107: 7 \end{aligned}$	violate [1] - 43:14 violations [1] - 120:
training [12]-22:6,	two-way [12] - 9:17,	$80: 3,80: 5,80: 10,$ 80:13, 80:20, 80:21	user's [8]-28:20, $30 \cdot 8,49 \cdot 25,52 \cdot 21$	olent [1] - 70:13
$\begin{aligned} & 22: 9,22: 10,23: 22, \\ & 26 \cdot 16.31 \cdot 34 \\ & \hline 23 \end{aligned}$	19:5, 19:10, 25:1	$\begin{aligned} & 80: 13,80: 20,80: 21, \\ & 80: 22,89: 24,90: 9, \end{aligned}$	$\begin{aligned} & 30: 8,49: 25,52: 21, \\ & 94: 5,94: 7,94: 9 \end{aligned}$	$\text { irginia }[1]-26: 1$
26:16, 31:24, 33:24 $38: 6,38: 24,40: 24,$	44:17, 73:4, 73:7,	94:2, 94:8, 94:10,	user-friendly [2] -	rtual [1] - 91:14 sit [2] - 42:16, 96:
56:18, 87:20	74:8, 95	$: 18,96: 21$	78:4, 78:8	sited [2] - 32:6,
trainings [1] - 24:6 transaction [1]-21:2	$\begin{aligned} & \text { Tyler [1] }-62: 22 \\ & \text { type }[16]-25: 11 \end{aligned}$	$\begin{aligned} & \text { 96:23, 97:2, 97:5, } \\ & \text { 100:18, 100:19, } \end{aligned}$	$\begin{gathered} \text { username }[4]-14: 21, \\ 14: 24,50: 7,107: 5 \end{gathered}$	$\begin{aligned} & \text { 41:13 } \\ & \text { isiting }[1]-58: 4 \end{aligned}$
transcript [5] - 71:3,	33.13, 34.25,	7, 103:3,	usernames [1] - 33:21	$\text { al }[1]-98:$
$\begin{aligned} & \text { 71:5, 71:9, 124:7, } \\ & 124: 9 \end{aligned}$	$58: 4,58: 21,59: 4$	$\begin{aligned} & \text { 103:5, 103:6, } \\ & \text { 103:11, 103:15, } \end{aligned}$	$\begin{aligned} & \text { users }[9]-25: 3 \\ & 27: 14,27: 22,38: \end{aligned}$	[1] - 1:5
TRANSCRIPT [1] - 1:8 transfer [1] - 47:16	$\begin{aligned} & 81: 8,87: 6,93: 5 \text {, } \\ & \text { 101:23, 105:22, } \end{aligned}$	$\begin{aligned} & \text { 107:5, 108:17, } \\ & \text { 108:19, 109:9, } \end{aligned}$	$\begin{aligned} & 39: 12,54: 24,87: 14, \\ & 87: 22,103: 10 \end{aligned}$	$\begin{aligned} & 93: 6,93: 7,93: 15, \\ & 104: 6,108: 4 \end{aligned}$

W	WITNESSES [2] - 2:7, 2:12
```wait \({ }_{[1]}-106: 20\) waiting [1] - 56:6 walk [1] - 36:22 wants [2]-12:19, 115:14 warrant [14]-8:14, 8:19, 10:3, 14:10, 22:18, 22:19, 26:7, 72:16, 72:23, 73:2, 74:2, 79:9, 117:25, 118:6 Washington [2] - 25:13, 44:22 ways [3]-28:21, 36:23, 40:11 web [1] - 14:7 website [50]-6:19, 10:11, 14:8, 19:2, 27:21, 32:6, 39:4, 43:8, 50:7, 54:25, 55:12, 56:24, 57:10, 58:19, 60:9, 60:21, 61:2, 61:16, 76:6, 76:12, 76:22, 77:6, 80:16, 83:13, 83:16, 83:19, 84:6, 84:10, 84:12, 84:17, 85:25, 86:6, 86:9, 86:10, 86:14, 86:22, 87:2,```	$\begin{aligned} & \text { witnesses }[6]-69: 20, \\ & 69: 21,99: 17, \\ & \text { 107:21, 107:22, } \\ & \text { 113:10 } \\ & \text { word }[4]-13: 15 \text {, } \\ & 57: 18,81: 14,100: 17 \\ & \text { worded }[1]-49: 21 \\ & \text { words }[1]-10: 23 \\ & \text { works }[2]-45: 25 \text {, } \\ & 55: 16 \\ & \text { world }[4]-46: 25, \\ & 50: 13,71: 14,80: 16 \\ & \text { worth }[1]-73: 3 \\ & \text { wrap }[1]-45: 18 \\ & \text { write }[20]-23: 25, \\ & 24: 21,28: 13,28: 14, \\ & 28: 16,31: 6,35: 2, \\ & 35: 19,38: 13,63: 22, \\ & 63: 24,89: 23,90: 1, \\ & 90: 9,90: 10,102: 19, \\ & 104: 21,112: 15 \\ & \text { writing }[2]-64: 15, \\ & 121: 23 \\ & \text { written }[11]-28: 11, \\ & 33: 7,33: 10,39: 9, \\ & 68: 14,71: 20,77: 22, \\ & 78: 7,78: 10,78: 13, \\ & 98: 4 \end{aligned}$
$\begin{aligned} & 87: 10,87: 13,87: 22, \\ & 95: 23,95: 24,96: 1, \end{aligned}$	Y
$\begin{aligned} & \text { 96:18, 98:18, 98:19, } \\ & 98: 23,103: 10,114: 2 \\ & \text { websites }[4]-34: 8, \\ & 67: 8,84: 21,85: 19 \\ & \text { weighed }[1]-101: 3 \\ & \text { weird }[1]-49: 21 \\ & \text { well-known }[1]-82: 10 \\ & \text { Western }[1]-124: 5 \end{aligned}$	$\begin{aligned} & \text { y'all }[2]-45: 11,122: 9^{\text {year }[1]-20: 14} \\ & \text { years }[1]-21: 15 \\ & \text { yield }[2]-102: 8,102: 9 \\ & \text { Yon }[1]-25: 19 \\ & \text { yourself }[4]-25: 19, \\ & 38: 9,55: 21,70: 9 \end{aligned}$
WESTERN [1] - 1:1	Z
$\begin{aligned} & 115: 2 \\ & \text { whole }[8]-17: 8, \\ & 50: 10,83: 8,113: 9, \\ & \text { 113:13, 114:7, } \\ & \text { 114:15, 115:13 } \\ & \text { wholly }[1]-105: 14 \\ & \text { wild }[1]-87: 24 \\ & \text { willing }[2]-105: 16, \\ & \text { 120:16 } \\ & \text { windows }[1]-32: 21 \\ & \text { Windows }[1]-33: 1 \\ & \text { withholding }[1]-98: 7 \\ & \text { WITNESS }[3]-19: 19, \\ & 62: 25,99: 15 \\ & \text { witness }[8]-4: 2,4: 4, \\ & 19: 24,35: 25,42: 2, \\ & 69: 18,101: 3,109: 11 \end{aligned}$	$\begin{aligned} & \text { zero [3] - 85:9, 85:10, } \\ & 86: 14 \end{aligned}$

